메뉴 건너뛰기




Volumn 2, Issue , 2002, Pages 769-776

Learning Bayesian networks. I. A theory based on MAP-MDL criteria

Author keywords

Bayesian networks; EM algorithm; Learning; maximum aposterior probability (MAP); minimum description length (MDL)

Indexed keywords

ALGORITHMS; INFORMATION FUSION; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY DISTRIBUTIONS;

EID: 17744368925     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICIF.2002.1020884     Document Type: Conference Paper
Times cited : (7)

References (15)
  • 1
    • 0003846041 scopus 로고    scopus 로고
    • Tech. Rep. MSR- TR-95-06, Microsoft Research, Advanced Technology Division, Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052, USA, March
    • D. Heckerraan, "A tutorial on learning with Bayesian networks (revised)," Tech. Rep. MSR- TR-95-06, Microsoft Research, Advanced Technology Division, Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052, USA, March 1996.
    • (1996) A Tutorial on Learning with Bayesian Networks (Revised)
    • Heckerraan, D.1
  • 2
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • W. Buntine, "A guide to the literature on learning probabilistic networks from data," IEEE Trans. Knowledge and Data Engineering, vol. 8, no. 2, 1996.
    • (1996) IEEE Trans. Knowledge and Data Engineering , vol.8 , Issue.2
    • Buntine, W.1
  • 5
    • 0034314796 scopus 로고    scopus 로고
    • Fuzzy bayesian networks - A general formalism for representation, inference and learning with hybrid bayesian networks
    • H.-P. Pan, "Fuzzy Bayesian networks - a general formalism for representation, inference and learning with hybrid Bayesian networks," International Journal of Pattern Recognition and Artificial Intelligence, vol. 14, no. 7, pp. 941-962, 2000.
    • (2000) International Journal of Pattern Recognition and Artificial Intelligence , vol.14 , Issue.7 , pp. 941-962
    • Pan, H.-P.1
  • 6
    • 34249832377 scopus 로고
    • A bayesian method for the induction of probabilistic networks from data
    • G. Cooper and E. Herskovits, "A Bayesian method for the induction of probabilistic networks from data," Machine Learning, vol. 9, pp. 309347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309347
    • Cooper, G.1    Herskovits, E.2
  • 9
    • 0003021797 scopus 로고
    • A construction of bayesian networks from databases based on an mdl scheme
    • (D. Heckerman and A. Mamdani, eds. ), (San Francisco), Morgan Kaufmann
    • J. Suzuki, "A construction of Bayesian networks from databases based on an MDL scheme," in Proc. Ninth Conference on Uncertainty in Artificial Intelligence(UAI'93 (D. Heckerman and A. Mamdani, eds. ), (San Francisco), Morgan Kaufmann, 1993.
    • (1993) Proc. Ninth Conference on Uncertainty in Artificial Intelligence(UAI'93)
    • Suzuki, J.1
  • 10
    • 0028482006 scopus 로고
    • Learning bayesian belief networks: An approach based on the MDL principle
    • W. Lam and F. Bacchus, "Learning Bayesian belief networks: An approach based on the MDL principle," Computational Intelligence, vol. 10, pp. 269-293,1994.
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 11
    • 0001916227 scopus 로고
    • Properties of bayesian network learning algorithms
    • (R. L. de Mantaras and D. Poole, eds. ), (San Francisco), Morgan Kaufmann
    • R. Bouckaert, "Properties of Bayesian network learning algorithms," in Proc, Tenth Conference on Uncertainty in Artificial Intelligence(UAI'94) (R. L. de Mantaras and D. Poole, eds. ), (San Francisco), Morgan Kaufmann, 1994.
    • (1994) Proc, Tenth Conference on Uncertainty in Artificial Intelligence(UAI'94)
    • Bouckaert, R.1
  • 13
    • 0018015137 scopus 로고
    • Modelling by shortest data description
    • J. Rissanen, "Modelling by shortest data description," Automatic, vol. 14, pp. 465-471, 1978.
    • (1978) Automatic , vol.14 , pp. 465-471
    • Rissanen, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.