메뉴 건너뛰기




Volumn 21, Issue 2, 2005, Pages 199-214

A comparative study of multi-class support vector machines in the unifying framework of large margin classifiers

Author keywords

Extended VC dimensions; Generalization error bounds; Large margin classifiers; Multi class support vector machines (M SVMs)

Indexed keywords

DATA ACQUISITION; FUNCTIONS; MATHEMATICAL MODELS; PROBABILITY DISTRIBUTIONS; STATISTICAL METHODS; THEOREM PROVING;

EID: 17444410319     PISSN: 15241904     EISSN: None     Source Type: Journal    
DOI: 10.1002/asmb.534     Document Type: Article
Times cited : (7)

References (49)
  • 1
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik VN, Chervonenkis AYa. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 1971; 16:264-280.
    • (1971) Theory of Probability and Its Applications , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2
  • 6
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett PL. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory 1998; 44(2):525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 8
    • 0001426268 scopus 로고    scopus 로고
    • Probabilistic analysis of learning in artificial neural networks: The PAC model and its variants
    • Anthony M. Probabilistic analysis of learning in artificial neural networks: the PAC model and its variants. Neural Computing Surveys 1997; 1:1-47.
    • (1997) Neural Computing Surveys , vol.1 , pp. 1-47
    • Anthony, M.1
  • 9
    • 0033329657 scopus 로고    scopus 로고
    • Estimating the sample complexity of a multi-class discriminant model
    • IEE: London
    • Guermeur Y, Elisseeff A, Paugam-Moisy H. Estimating the sample complexity of a multi-class discriminant model. In ICANN'99. IEE: London, 1999; 310-315.
    • (1999) ICANN'99 , pp. 310-315
    • Guermeur, Y.1    Elisseeff, A.2    Paugam-Moisy, H.3
  • 10
    • 0742301682 scopus 로고    scopus 로고
    • Margin error and generalization capabilities of multi-class discriminant models
    • NeuroCOLT2, (revised in 2001)
    • Elisseeff A, Guermeur Y, Paugam-Moisy H. Margin error and generalization capabilities of multi-class discriminant models. Technical Report NC-TR-99-051-R, NeuroCOLT2, 1999 (revised in 2001).
    • (1999) Technical Report , vol.NC-TR-99-051-R
    • Elisseeff, A.1    Guermeur, Y.2    Paugam-Moisy, H.3
  • 11
    • 0742284409 scopus 로고    scopus 로고
    • A simple unifying theory of multi-class support vector machines
    • INRIA
    • Guermeur Y. A simple unifying theory of multi-class support vector machines. Technical Report RR-4669, INRIA, 2002.
    • (2002) Technical Report , vol.RR-4669
    • Guermeur, Y.1
  • 12
    • 84888364466 scopus 로고    scopus 로고
    • Large margin DAGs for multiclass classification
    • Platt JC, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification. In NIPS'12, 2000; 547-553.
    • (2000) NIPS'12 , pp. 547-553
    • Platt, J.C.1    Cristianini, N.2    Shawe-Taylor, J.3
  • 13
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard MD, Lippmann RP. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation 1991; 3:461-483.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 16
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • Haussler D. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation 1992; 100:78-150.
    • (1992) Information and Computation , vol.100 , pp. 78-150
    • Haussler, D.1
  • 18
  • 19
    • 0034915184 scopus 로고    scopus 로고
    • A note on a scale-sensitive dimension of linear bounded functionals in Banach spaces
    • Gurvits L. A note on a scale-sensitive dimension of linear bounded functionals in Banach spaces. Theoretical Computer Science 2001; 261(1):81-90.
    • (2001) Theoretical Computer Science , vol.261 , Issue.1 , pp. 81-90
    • Gurvits, L.1
  • 20
    • 0001605679 scopus 로고
    • Universal Donsker classes and metric entropy
    • Dudley RM. Universal Donsker classes and metric entropy. The Annals of Probability 1987; 15(4): 1306-1326.
    • (1987) The Annals of Probability , vol.15 , Issue.4 , pp. 1306-1326
    • Dudley, R.M.1
  • 21
    • 0000378526 scopus 로고
    • On learning sets and functions
    • Natarajan BK. On learning sets and functions. Machine Learning 1989; 4:67-97.
    • (1989) Machine Learning , vol.4 , pp. 67-97
    • Natarajan, B.K.1
  • 22
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • Boser B, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers. In COLT'92, 1992; 144-152.
    • (1992) COLT'92 , pp. 144-152
    • Boser, B.1    Guyon, I.2    Vapnik, V.3
  • 24
    • 85118436573 scopus 로고
    • Extracting support data for a given task
    • Schölkopf B, Burges C, Vapnik V. Extracting support data for a given task. In ICKDDM'95, 1995; 252-257.
    • (1995) ICKDDM'95 , pp. 252-257
    • Schölkopf, B.1    Burges, C.2    Vapnik, V.3
  • 25
    • 0011857380 scopus 로고    scopus 로고
    • Support vector machines for multi-class classification
    • IDIAP
    • Mayoraz E, Alpaydin E. Support vector machines for multi-class classification. Technical Report 98-06, IDIAP, 1998.
    • (1998) Technical Report , vol.98 , Issue.6
    • Mayoraz, E.1    Alpaydin, E.2
  • 28
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing Kernel Hubert spaces, and randomized GACV
    • Schölkopf B, Burges CJC, Smola AJ (eds). MIT Press: Cambridge, MA
    • Wahba G. Support vector machines, reproducing Kernel Hubert spaces, and randomized GACV. In Advances in Kernel Methods, Support Vector Learning, Schölkopf B, Burges CJC, Smola AJ (eds). MIT Press: Cambridge, MA, 1999; 69-88.
    • (1999) Advances in Kernel Methods, Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 29
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman M, Braverman E, Rozonoer L. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 1964; 25:821-837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.1    Braverman, E.2    Rozonoer, L.3
  • 30
    • 0003425673 scopus 로고    scopus 로고
    • Multi-class support vector machines
    • Royal Holloway, Department of Computer Science, University of London
    • Weston J, Watkins C. Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, Department of Computer Science, University of London, 1998.
    • (1998) Technical Report , vol.CSD-TR-98-04
    • Weston, J.1    Watkins, C.2
  • 32
    • 0033702673 scopus 로고    scopus 로고
    • A new multi-class SVM based on a uniform convergence result
    • Guermeur Y, Elisseeff A, Paugam-Moisy H. A new multi-class SVM based on a uniform convergence result. In IJCNN'00, vol. IV, 2000; 183-188.
    • (2000) IJCNN'00 , vol.4 , pp. 183-188
    • Guermeur, Y.1    Elisseeff, A.2    Paugam-Moisy, H.3
  • 33
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C-W, Lin C-J. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 2002; 13:415-425.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 34
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multidass kernel-based vector machines
    • Crammer K, Singer Y. On the algorithmic implementation of multidass kernel-based vector machines. Journal of Machine Learning Research 2001; 2:265-292.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 36
    • 0038007185 scopus 로고    scopus 로고
    • Multicategory support vector machines
    • Department of Statistics, University of Wisconsin, Madison
    • Lee Y, Lin Y, Wahba G. Multicategory support vector machines. Technical Report 1043, Department of Statistics, University of Wisconsin, Madison, 2001.
    • (2001) Technical Report , vol.1043
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 37
    • 0038421009 scopus 로고    scopus 로고
    • Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data
    • Department of Statistics, University of Wisconsin, Madison
    • Lee Y. Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data. Technical Report 1063, Department of Statistics, University of Wisconsin, Madison, 2002.
    • (2002) Technical Report , vol.1063
    • Lee, Y.1
  • 38
    • 17444372524 scopus 로고    scopus 로고
    • Combining protein secondary structure prediction models with ensemble methods of optimal complexity
    • Guermeur Y, Zelus D. Combining protein secondary structure prediction models with ensemble methods of optimal complexity. In JOBIM'01, 2001; 97-104.
    • (2001) JOBIM'01 , pp. 97-104
    • Guermeur, Y.1    Zelus, D.2
  • 39
    • 0036088194 scopus 로고    scopus 로고
    • Combining discriminant models with new multi-class SVMs
    • Guermeur Y. Combining discriminant models with new multi-class SVMs. Pattern Analysis and Applications 2002; 5(2): 168-179.
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.2 , pp. 168-179
    • Guermeur, Y.1
  • 41
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and other pattern classifiers
    • Schölkopf B, Burges CJC, Smola A (eds). MIT Press: Cambridge, MA
    • Bartlett PL, Shawe-Taylor J. Generalization performance of support vector machines and other pattern classifiers. In Advances in Kernel Methods, Support Vector Learning, Schölkopf B, Burges CJC, Smola A (eds). MIT Press: Cambridge, MA, 1999; 43-54.
    • (1999) Advances in Kernel Methods, Support Vector Learning , pp. 43-54
    • Bartlett, P.L.1    Shawe-Taylor, J.2
  • 42
    • 0035441827 scopus 로고    scopus 로고
    • Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
    • Williamson RC, Smola AJ, Schölkopf B. Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Transactions on Information Theory 2001; 47(6): 2516-2532.
    • (2001) IEEE Transactions on Information Theory , vol.47 , Issue.6 , pp. 2516-2532
    • Williamson, R.C.1    Smola, A.J.2    Schölkopf, B.3
  • 43
    • 0004094721 scopus 로고    scopus 로고
    • Ph.D. Thesis, Technische Universität Berlin
    • Smola AJ. Learning with kernels. Ph.D. Thesis, Technische Universität Berlin, 1998.
    • (1998) Learning with Kernels
    • Smola, A.J.1
  • 47
    • 0002415912 scopus 로고    scopus 로고
    • A sharp concentration inequality with applications
    • NeuroCOLT2
    • Boucheron S, Lugosi G, Massart P. A sharp concentration inequality with applications. Technical Report NC2-TR-1999-057, NeuroCOLT2, 1999.
    • (1999) Technical Report , vol.NC2-TR-1999-057
    • Boucheron, S.1    Lugosi, G.2    Massart, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.