-
2
-
-
0039923684
-
A parallel divide and conquer algorithm for the generalized real symmetric definite tridiagonal eigenvalue problem
-
eds. L. Reichel, A. Ruttan and R.S. Varga (de Gruyter, Berlin)
-
C.F. Borges and W.B. Gragg, A parallel divide and conquer algorithm for the generalized real symmetric definite tridiagonal eigenvalue problem, in: Numerical Linear Algebra, eds. L. Reichel, A. Ruttan and R.S. Varga (de Gruyter, Berlin, 1993) pp. 11-29.
-
(1993)
Numerical Linear Algebra
, pp. 11-29
-
-
Borges, C.F.1
Gragg, W.B.2
-
3
-
-
0002316189
-
Rank-one modification of the symmetric eigenproblem
-
J.R. Bunch, C.P. Nielsen and D.C. Sorensen, Rank-one modification of the symmetric eigenproblem, Numer. Math. 31 (1978) 31-48.
-
(1978)
Numer. Math.
, vol.31
, pp. 31-48
-
-
Bunch, J.R.1
Nielsen, C.P.2
Sorensen, D.C.3
-
5
-
-
0034394306
-
Fast and stable eigendecomposition of symmetric banded plus semi-separable matrices
-
S. Chandrasekaran and M. Gu, Fast and stable eigendecomposition of symmetric banded plus semi-separable matrices, Linear Algebra Appl. 313 (2000) 107-114.
-
(2000)
Linear Algebra Appl.
, vol.313
, pp. 107-114
-
-
Chandrasekaran, S.1
Gu, M.2
-
6
-
-
0000659575
-
A divide and conquer method for the symmetric tridiagonal eigenproblem
-
J.J.M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem, Numer. Math. 36 (1981) 177-195.
-
(1981)
Numer. Math.
, vol.36
, pp. 177-195
-
-
Cuppen, J.J.M.1
-
8
-
-
0000376665
-
Fast algorithms with preprocessing for matrix-vector multiplication problems
-
I. Gohberg and V. Olshevsky, Fast algorithms with preprocessing for matrix-vector multiplication problems, J. Complexity 10 (1994) 411-427.
-
(1994)
J. Complexity
, vol.10
, pp. 411-427
-
-
Gohberg, I.1
Olshevsky, V.2
-
9
-
-
17444371597
-
Some modified matrix eigenvalue problems
-
G.H. Golub, Some modified matrix eigenvalue problems, SIAM Rev. 19 (1977) 46-89.
-
(1977)
SIAM Rev.
, vol.19
, pp. 46-89
-
-
Golub, G.H.1
-
10
-
-
0004236492
-
-
John Hopkins Univ. Press, Baltimore, MD
-
G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed. (John Hopkins Univ. Press, Baltimore, MD, 1996).
-
(1996)
Matrix Computations, 3rd Ed.
-
-
Golub, G.H.1
Van Loan, C.F.2
-
11
-
-
0040969900
-
Parallel divide and conquer algorithms for the symmetric tridiagonal eigenvalue problem and bidiagonal singular value problem
-
eds. W.G. Vogt and M.H. Mickle (Univ. Pittsburgh School of Engineering, Pittsburgh)
-
W.B. Gragg, J.R. Thornton and D.D. Warner, Parallel divide and conquer algorithms for the symmetric tridiagonal eigenvalue problem and bidiagonal singular value problem, in: Modeling and Simulation, Part 1, Vol. 23, eds. W.G. Vogt and M.H. Mickle (Univ. Pittsburgh School of Engineering, Pittsburgh, 1992) pp. 49-56.
-
(1992)
Modeling and Simulation, Part 1
, vol.23
, pp. 49-56
-
-
Gragg, W.B.1
Thornton, J.R.2
Warner, D.D.3
-
13
-
-
21844525426
-
A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem
-
M. Gu and S.C. Eisenstat, A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem, SIAM J. Matrix Anal. Appl. 15(4) (1994) 1266-1276.
-
(1994)
SIAM J. Matrix Anal. Appl.
, vol.15
, Issue.4
, pp. 1266-1276
-
-
Gu, M.1
Eisenstat, S.C.2
-
14
-
-
21844526695
-
A divide-and-conquer algorithm for the symmetric tridiagonal eigenvalue problem
-
M. Gu and S.C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiagonal eigenvalue problem, SIAM J. Matrix Anal. Appl. 16(1) (1995) 172-191.
-
(1995)
SIAM J. Matrix Anal. Appl.
, vol.16
, Issue.1
, pp. 172-191
-
-
Gu, M.1
Eisenstat, S.C.2
-
15
-
-
0013420838
-
Fast and stable algorithms for reducing diagonal plus semi-separable matrices to tridiagonal and bidiagonal form
-
N. Mastronardi, S. Chandrasekaran and S. Van Huffel, Fast and stable algorithms for reducing diagonal plus semi-separable matrices to tridiagonal and bidiagonal form, BIT 41(1) (2001) 149-157.
-
(2001)
BIT
, vol.41
, Issue.1
, pp. 149-157
-
-
Mastronardi, N.1
Chandrasekaran, S.2
Van Huffel, S.3
-
17
-
-
84968519566
-
The Lanczos algorithm with partial reorthogonalization
-
H.D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp. 42 (1984) 115-142.
-
(1984)
Math. Comp.
, vol.42
, pp. 115-142
-
-
Simon, H.D.1
-
19
-
-
1442309631
-
-
Report TW 360, Department of Computer Science, Katholieke Universiteit Leuven, Belgium
-
M. Van Barel, R. Vandebril and N. Mastronardi, The Lanczos-Ritz values appearing in an orthogonal similarity reduction of a matrix into semi-separable form, Report TW 360, Department of Computer Science, Katholieke Universiteit Leuven, Belgium (2003).
-
(2003)
The Lanczos-Ritz Values Appearing in an Orthogonal Similarity Reduction of a Matrix into Semi-separable Form
-
-
Van Barel, M.1
Vandebril, R.2
Mastronardi, N.3
|