-
2
-
-
0039762490
-
Poincaré inequalities for powers and products of admissible weights
-
to appear
-
_, Poincaré inequalities for powers and products of admissible weights, Ann. Acad. Sci. Fenn. Ser. A I Math, (to appear).
-
Ann. Acad. Sci. Fenn. Ser. A I Math
-
-
-
3
-
-
0001519449
-
Local properties of solutions of elliptic partial differential equations
-
A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225.
-
(1961)
Studia Math.
, vol.20
, pp. 171-225
-
-
Calderón, A.P.1
Zygmund, A.2
-
4
-
-
0033456306
-
Differentiability of Lipschitz functions on metric spaces
-
J. Cheeger, Differentiability of Lipschitz functions on metric spaces, Geom. Funct. Anal. 9 (1999), 428-517.
-
(1999)
Geom. Funct. Anal.
, vol.9
, pp. 428-517
-
-
Cheeger, J.1
-
6
-
-
0001587943
-
Sobolev spaces on an arbitrary metric space
-
P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415.
-
(1996)
Potential Anal.
, vol.5
, pp. 403-415
-
-
Hajłasz, P.1
-
8
-
-
0010930363
-
On the differentiability of solutions of quasilinear elliptic equations
-
P. Hajłasz and P. Strzelecki, On the differentiability of solutions of quasilinear elliptic equations, Colloq. Math. 64 (1993), 287-291.
-
(1993)
Colloq. Math.
, vol.64
, pp. 287-291
-
-
Hajłasz, P.1
Strzelecki, P.2
-
9
-
-
0003518381
-
-
Oxford Univ. Press, Oxford
-
J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, Oxford, 1993.
-
(1993)
Nonlinear Potential Theory of Degenerate Elliptic Equations
-
-
Heinonen, J.1
Kilpeläinen, T.2
Martio, O.3
-
10
-
-
0007267546
-
A note on Lipschitz functions, upper gradients, and the poincaré inequality
-
J. Heinonen and P. Koskela, A note on Lipschitz functions, upper gradients, and the Poincaré inequality, New Zealand J. Math. 28 (1999), 37-42.
-
(1999)
New Zealand J. Math.
, vol.28
, pp. 37-42
-
-
Heinonen, J.1
Koskela, P.2
-
11
-
-
0010808175
-
Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities
-
J. Ježková, Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities, Comment. Math. Univ. Carolin. 35 (1994), 63-80.
-
(1994)
Comment. Math. Univ. Carolin.
, vol.35
, pp. 63-80
-
-
Ježková, J.1
-
12
-
-
0010815302
-
Note on Lorentz spaces and differentiability of weak solutions to elliptic equations
-
G. Karch and T. Ricciardi, Note on Lorentz spaces and differentiability of weak solutions to elliptic equations, Bull. Polish Acad. Sci. Math. 45 (1997), 111-116.
-
(1997)
Bull. Polish Acad. Sci. Math.
, vol.45
, pp. 111-116
-
-
Karch, G.1
Ricciardi, T.2
-
13
-
-
84875554353
-
Newtonian spaces: An extension of Sobolev spaces to metric measure spaces
-
to appear
-
N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana (to appear).
-
Rev. Mat. Iberoamericana
-
-
Shanmugalingam, N.1
|