메뉴 건너뛰기




Volumn 6 A, Issue 4, 2005, Pages 265-269

Determining heating pipe temperature in greenhouse using proportional integral plus feedforward control and radial basic function neural-networks

Author keywords

Greenhouse; Neural networks; PI control; Temperature

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; HEAT PIPES; MATHEMATICAL MODELS; PROPORTIONAL CONTROL SYSTEMS; RADIAL BASIS FUNCTION NETWORKS;

EID: 17244364363     PISSN: 10093095     EISSN: None     Source Type: Journal    
DOI: 10.1631/jzus.2005.A0265     Document Type: Article
Times cited : (4)

References (10)
  • 3
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen, S., Cowan, C.F.N., Grant, P.M., 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans on Neural Networks, 2(2): 302-309.
    • (1991) IEEE Trans on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 4
    • 0026992119 scopus 로고
    • Orthogonal least-squares algorithm for training multioutput radial basis function networks
    • Chen, S., Grant, P.M., Cowan, C.F.N., 1992. Orthogonal least-squares algorithm for training multioutput radial basis function networks. IEE Proceedings-F, 139(6): 378-384.
    • (1992) IEE Proceedings - F , vol.139 , Issue.6 , pp. 378-384
    • Chen, S.1    Grant, P.M.2    Cowan, C.F.N.3
  • 5
    • 0026153284 scopus 로고
    • Improve of greenhouse heating control
    • Davis, P.P., Hooper, A.W., 1991. Improve of greenhouse heating control. IEE Proceedings, 138(3): 249-255.
    • (1991) IEE Proceedings , vol.138 , Issue.3 , pp. 249-255
    • Davis, P.P.1    Hooper, A.W.2
  • 6
    • 0742324118 scopus 로고    scopus 로고
    • Modeling greenhouse temperature using system identification by means of neural networks
    • Frausto, H., Pieters, J., 2004. Modeling greenhouse temperature using system identification by means of neural networks. Neurocomputing, 56: 243-248.
    • (2004) Neurocomputing , vol.56 , pp. 243-248
    • Frausto, H.1    Pieters, J.2
  • 7
    • 0036138323 scopus 로고    scopus 로고
    • Neural network model in greenhouse air temperature prediction
    • Ferreira, P.M., Faria, E.A., Ruano, A.E., 2002. Neural network model in greenhouse air temperature prediction. Neurocomputing, 43: 51-75.
    • (2002) Neurocomputing , vol.43 , pp. 51-75
    • Ferreira, P.M.1    Faria, E.A.2    Ruano, A.E.3
  • 8
    • 1842478874 scopus 로고    scopus 로고
    • Greenhouse temperature modeling: A comparison between sigmoid neural networks and hybrid models
    • Linker, R., Seginer, I., 2004. Greenhouse temperature modeling: a comparison between sigmoid neural networks and hybrid models. Mathematics and Computers in Simulation, 65: 19-29.
    • (2004) Mathematics and Computers in Simulation , vol.65 , pp. 19-29
    • Linker, R.1    Seginer, I.2
  • 9
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody, J.E., Darken, C.I., 1988. Fast learning in networks of locally-tuned processing units. Neural Computation, 1: 282-294.
    • (1988) Neural Computation , vol.1 , pp. 282-294
    • Moody, J.E.1    Darken, C.I.2
  • 10
    • 0031209547 scopus 로고    scopus 로고
    • Some artificial neural network application to greenhouse environmental control
    • Seginer, I., 1997. Some artificial neural network application to greenhouse environmental control. Computer and Electronics in Agriculture, 18: 167-186.
    • (1997) Computer and Electronics in Agriculture , vol.18 , pp. 167-186
    • Seginer, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.