메뉴 건너뛰기




Volumn 38, Issue 31, 1997, Pages 5569-5572

Stereocontrol by intrinsic antiparallel double repulsion on diacetone-D-glucose template. Diastereoselective synthesis of 3(S)-isothiocyanato-3-deoxy-3-C-vinyl glucose via (3,3)-sigmatropic rearrangement of allylic thiocyanates

Author keywords

[No Author keywords available]

Indexed keywords

GLUCOSE; GLUCOSE DERIVATIVE; THIOCYANIC ACID DERIVATIVE;

EID: 17144460216     PISSN: 00404039     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0040-4039(97)01246-X     Document Type: Article
Times cited : (24)

References (24)
  • 2
    • 0342664623 scopus 로고
    • Dyong, I., Weigand, J., Merten, H., Tetrahedron Lett. 1981, 22, 2965. Fleet, G. W. J., Gough, M., J., Tetrahedron Lett. 1982, 23, 4509. Fleet, G. W. J., Gough, M. J., Shing, T. K. M., Tetrahedron Lett. 1983, 24, 3661. Gonzales, F. S., Berenguel, A. V., Mateo, F. H., Mendoza, P. G., Baer, H. H., Carbohydrate Res., 1992, 237, 145. Fraser-Reid, B., Alonso, R. A., McDevitt, R. E., Rao, B., V., Vite, G. D., Zottola, M. A., Bull. Soc. Chim. B 1992, 101, 617.
    • (1981) Tetrahedron Lett. , vol.22 , pp. 2965
    • Dyong, I.1    Weigand, J.2    Merten, H.3
  • 3
    • 0000902201 scopus 로고
    • Dyong, I., Weigand, J., Merten, H., Tetrahedron Lett. 1981, 22, 2965. Fleet, G. W. J., Gough, M., J., Tetrahedron Lett. 1982, 23, 4509. Fleet, G. W. J., Gough, M. J., Shing, T. K. M., Tetrahedron Lett. 1983, 24, 3661. Gonzales, F. S., Berenguel, A. V., Mateo, F. H., Mendoza, P. G., Baer, H. H., Carbohydrate Res., 1992, 237, 145. Fraser-Reid, B., Alonso, R. A., McDevitt, R. E., Rao, B., V., Vite, G. D., Zottola, M. A., Bull. Soc. Chim. B 1992, 101, 617.
    • (1982) Tetrahedron Lett. , vol.23 , pp. 4509
    • Fleet, G.W.J.1    Gough, M.J.2
  • 4
    • 0000056607 scopus 로고
    • Dyong, I., Weigand, J., Merten, H., Tetrahedron Lett. 1981, 22, 2965. Fleet, G. W. J., Gough, M., J., Tetrahedron Lett. 1982, 23, 4509. Fleet, G. W. J., Gough, M. J., Shing, T. K. M., Tetrahedron Lett. 1983, 24, 3661. Gonzales, F. S., Berenguel, A. V., Mateo, F. H., Mendoza, P. G., Baer, H. H., Carbohydrate Res., 1992, 237, 145. Fraser-Reid, B., Alonso, R. A., McDevitt, R. E., Rao, B., V., Vite, G. D., Zottola, M. A., Bull. Soc. Chim. B 1992, 101, 617.
    • (1983) Tetrahedron Lett. , vol.24 , pp. 3661
    • Fleet, G.W.J.1    Gough, M.J.2    Shing, T.K.M.3
  • 5
    • 0343534846 scopus 로고
    • Dyong, I., Weigand, J., Merten, H., Tetrahedron Lett. 1981, 22, 2965. Fleet, G. W. J., Gough, M., J., Tetrahedron Lett. 1982, 23, 4509. Fleet, G. W. J., Gough, M. J., Shing, T. K. M., Tetrahedron Lett. 1983, 24, 3661. Gonzales, F. S., Berenguel, A. V., Mateo, F. H., Mendoza, P. G., Baer, H. H., Carbohydrate Res., 1992, 237, 145. Fraser-Reid, B., Alonso, R. A., McDevitt, R. E., Rao, B., V., Vite, G. D., Zottola, M. A., Bull. Soc. Chim. B 1992, 101, 617.
    • (1992) Carbohydrate Res. , vol.237 , pp. 145
    • Gonzales, F.S.1    Berenguel, A.V.2    Mateo, F.H.3    Mendoza, P.G.4    Baer, H.H.5
  • 6
    • 84988112889 scopus 로고
    • Dyong, I., Weigand, J., Merten, H., Tetrahedron Lett. 1981, 22, 2965. Fleet, G. W. J., Gough, M., J., Tetrahedron Lett. 1982, 23, 4509. Fleet, G. W. J., Gough, M. J., Shing, T. K. M., Tetrahedron Lett. 1983, 24, 3661. Gonzales, F. S., Berenguel, A. V., Mateo, F. H., Mendoza, P. G., Baer, H. H., Carbohydrate Res., 1992, 237, 145. Fraser-Reid, B., Alonso, R. A., McDevitt, R. E., Rao, B., V., Vite, G. D., Zottola, M. A., Bull. Soc. Chim. B 1992, 101, 617.
    • (1992) Bull. Soc. Chim. B , vol.101 , pp. 617
    • Fraser-Reid, B.1    Alonso, R.A.2    McDevitt, R.E.3    Rao, B.V.4    Vite, G.D.5    Zottola, M.A.6
  • 12
    • 0343098933 scopus 로고    scopus 로고
    • note
    • 2=CM).
  • 15
    • 0342664620 scopus 로고    scopus 로고
    • note
    • -3.
  • 16
    • 84988129057 scopus 로고
    • Theoretical calculations were carried out at the semiempirical RHF AM1 method, as implemented in the MOPAC 6.0 program (Stewart, J. P. P. J. Comput. Chem. 1989, 10, 209; Stewart, J. P. P. ibid. 1988, 44, 5597; Stewart, J. P. P. QCPE 1989, program 455). The transition states for intramolecular cyclization 4-Z->5/5′ (A, B) and 4-E->5/5′ (C, D) were located using the SADDLE routine implemented in MOPAC. Further refinements of these approximate transition state geometries were carried out by minimizing the norm of energy (Baker, J. J. Comput. Chem. 1986, 7, 385) using the eigenvector-following (EF) method. The resulting geometries have a one negative vibration frequency (McIver, J. W.; Komornicky, A. J. Am. Chem. Soc. 1972, 94, 2625) and verification using intrinsic reaction coordinate calculations for modes 1 and -1 leads to the reactants and products of the reactions.
    • (1989) J. Comput. Chem. , vol.10 , pp. 209
    • Stewart, J.P.P.1
  • 17
    • 0004779782 scopus 로고
    • Theoretical calculations were carried out at the semiempirical RHF AM1 method, as implemented in the MOPAC 6.0 program (Stewart, J. P. P. J. Comput. Chem. 1989, 10, 209; Stewart, J. P. P. ibid. 1988, 44, 5597; Stewart, J. P. P. QCPE 1989, program 455). The transition states for intramolecular cyclization 4-Z->5/5′ (A, B) and 4-E->5/5′ (C, D) were located using the SADDLE routine implemented in MOPAC. Further refinements of these approximate transition state geometries were carried out by minimizing the norm of energy (Baker, J. J. Comput. Chem. 1986, 7, 385) using the eigenvector-following (EF) method. The resulting geometries have a one negative vibration frequency (McIver, J. W.; Komornicky, A. J. Am. Chem. Soc. 1972, 94, 2625) and verification using intrinsic reaction coordinate calculations for modes 1 and -1 leads to the reactants and products of the reactions.
    • (1988) J. Comput. Chem. , vol.44 , pp. 5597
    • Stewart, J.P.P.1
  • 18
    • 0004235078 scopus 로고
    • program 455
    • Theoretical calculations were carried out at the semiempirical RHF AM1 method, as implemented in the MOPAC 6.0 program (Stewart, J. P. P. J. Comput. Chem. 1989, 10, 209; Stewart, J. P. P. ibid. 1988, 44, 5597; Stewart, J. P. P. QCPE 1989, program 455). The transition states for intramolecular cyclization 4-Z->5/5′ (A, B) and 4-E->5/5′ (C, D) were located using the SADDLE routine implemented in MOPAC. Further refinements of these approximate transition state geometries were carried out by minimizing the norm of energy (Baker, J. J. Comput. Chem. 1986, 7, 385) using the eigenvector-following (EF) method. The resulting geometries have a one negative vibration frequency (McIver, J. W.; Komornicky, A. J. Am. Chem. Soc. 1972, 94, 2625) and verification using intrinsic reaction coordinate calculations for modes 1 and -1 leads to the reactants and products of the reactions.
    • (1989) QCPE
    • Stewart, J.P.P.1
  • 19
    • 84988122931 scopus 로고
    • Theoretical calculations were carried out at the semiempirical RHF AM1 method, as implemented in the MOPAC 6.0 program (Stewart, J. P. P. J. Comput. Chem. 1989, 10, 209; Stewart, J. P. P. ibid. 1988, 44, 5597; Stewart, J. P. P. QCPE 1989, program 455). The transition states for intramolecular cyclization 4-Z->5/5′ (A, B) and 4-E->5/5′ (C, D) were located using the SADDLE routine implemented in MOPAC. Further refinements of these approximate transition state geometries were carried out by minimizing the norm of energy (Baker, J. J. Comput. Chem. 1986, 7, 385) using the eigenvector-following (EF) method. The resulting geometries have a one negative vibration frequency (McIver, J. W.; Komornicky, A. J. Am. Chem. Soc. 1972, 94, 2625) and verification using intrinsic reaction coordinate calculations for modes 1 and -1 leads to the reactants and products of the reactions.
    • (1986) J. Comput. Chem. , vol.7 , pp. 385
    • Baker, J.1
  • 20
    • 0342415826 scopus 로고
    • Theoretical calculations were carried out at the semiempirical RHF AM1 method, as implemented in the MOPAC 6.0 program (Stewart, J. P. P. J. Comput. Chem. 1989, 10, 209; Stewart, J. P. P. ibid. 1988, 44, 5597; Stewart, J. P. P. QCPE 1989, program 455). The transition states for intramolecular cyclization 4-Z->5/5′ (A, B) and 4-E->5/5′ (C, D) were located using the SADDLE routine implemented in MOPAC. Further refinements of these approximate transition state geometries were carried out by minimizing the norm of energy (Baker, J. J. Comput. Chem. 1986, 7, 385) using the eigenvector-following (EF) method. The resulting geometries have a one negative vibration frequency (McIver, J. W.; Komornicky, A. J. Am. Chem. Soc. 1972, 94, 2625) and verification using intrinsic reaction coordinate calculations for modes 1 and -1 leads to the reactants and products of the reactions.
    • (1972) J. Am. Chem. Soc. , vol.94 , pp. 2625
    • McIver, J.W.1    Komornicky, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.