메뉴 건너뛰기




Volumn 17, Issue 4, 2005, Pages 923-947

Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance

Author keywords

[No Author keywords available]

Indexed keywords

ION CHANNEL;

EID: 17144405327     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/0899766053429444     Document Type: Article
Times cited : (99)

References (44)
  • 1
    • 6644226801 scopus 로고    scopus 로고
    • Effects of synaptic noise and filtering on the frequency response of spiking neurons
    • Brunel, N., Chance, F. S., Fourcaud, N., & Abbott, L. F. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys. Rev. Lett., 86, 2186-2189.
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 2186-2189
    • Brunel, N.1    Chance, F.S.2    Fourcaud, N.3    Abbott, L.F.4
  • 2
    • 0035486770 scopus 로고    scopus 로고
    • Balanced neurons: Analysis of leaky integrate-and-fire neurons with reversal potentials
    • Burkitt, A. N. (2001). Balanced neurons: Analysis of leaky integrate-and-fire neurons with reversal potentials Biol. Cybern., 85, 247-255.
    • (2001) Biol. Cybern. , vol.85 , pp. 247-255
    • Burkitt, A.N.1
  • 3
    • 0032878919 scopus 로고    scopus 로고
    • New technique for analyzing integrate and fire neurons
    • Burkitt, A. N., & Clark, G. M. (1999). New technique for analyzing integrate and fire neurons. Neurocomputing, 26-27, 93-99.
    • (1999) Neurocomputing , vol.26-27 , pp. 93-99
    • Burkitt, A.N.1    Clark, G.M.2
  • 4
    • 0141957923 scopus 로고    scopus 로고
    • Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input
    • Burkitt A. N., Meffin, H., & Grayden, D. B. (2003). Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input. Biol. Cybern., 89, 119-125.
    • (2003) Biol. Cybern. , vol.89 , pp. 119-125
    • Burkitt, A.N.1    Meffin, H.2    Grayden, D.B.3
  • 5
    • 0037104631 scopus 로고    scopus 로고
    • Gain modulation from background synaptic input
    • Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773-782.
    • (2002) Neuron , vol.35 , pp. 773-782
    • Chance, F.S.1    Abbott, L.F.2    Reyes, A.D.3
  • 6
    • 0033053130 scopus 로고    scopus 로고
    • Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo
    • Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol., 81, 1531-1547.
    • (1999) J. Neurophysiol. , vol.81 , pp. 1531-1547
    • Destexhe, A.1    Paré, D.2
  • 7
    • 0035834798 scopus 로고    scopus 로고
    • Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons
    • Destexhe, A., Rudolph, M., Fellous, J.-M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neurosdence, 107, 13-24.
    • (2001) Neurosdence , vol.107 , pp. 13-24
    • Destexhe, A.1    Rudolph, M.2    Fellous, J.-M.3    Sejnowski, T.J.4
  • 8
    • 0141499222 scopus 로고    scopus 로고
    • The high-conductance state of neocortical neurons in vivo
    • Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Rev. Neurosci., 4, 739-751.
    • (2003) Nature Rev. Neurosci. , vol.4 , pp. 739-751
    • Destexhe, A.1    Rudolph, M.2    Paré, D.3
  • 9
    • 0142141489 scopus 로고    scopus 로고
    • Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity
    • Fellous, J.-M., Rudolph, M., Destexhe, A., & Sejnowski T. J. (2003). Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience, 122, 811-829.
    • (2003) Neuroscience , vol.122 , pp. 811-829
    • Fellous, J.-M.1    Rudolph, M.2    Destexhe, A.3    Sejnowski, T.J.4
  • 10
    • 0036716145 scopus 로고    scopus 로고
    • Dynamics of the firing probability of noisy integrate-and- Fire neurons
    • Fourcaud, N., & Brunel, N. (2002). Dynamics of the firing probability of noisy integrate-and- fire neurons. Neural Comput., 14, 2057-2110.
    • (2002) Neural Comput. , vol.14 , pp. 2057-2110
    • Fourcaud, N.1    Brunel, N.2
  • 11
    • 0001153339 scopus 로고
    • Amplitude distributions of shot noise
    • Gilbert, E. N., & Pollak, H. O. (1960). Amplitude distributions of shot noise. Bell. Syst. Tech. J., 39, 333-350.
    • (1960) Bell. Syst. Tech. J. , vol.39 , pp. 333-350
    • Gilbert, E.N.1    Pollak, H.O.2
  • 12
    • 1442300207 scopus 로고    scopus 로고
    • Dynamic influences on coincidence detection in neocortical pyramidal neurons
    • Grande, L. A., Kinney, G. A., Miracle G. L., & Spain W. J. (2004). Dynamic influences on coincidence detection in neocortical pyramidal neurons. J. Neurosci., 24, 1839-1851.
    • (2004) J. Neurosci. , vol.24 , pp. 1839-1851
    • Grande, L.A.1    Kinney, G.A.2    Miracle, G.L.3    Spain, W.J.4
  • 13
    • 0038394627 scopus 로고    scopus 로고
    • Stationary transmission distribution of random spike trains by dynamical synapses
    • Hahnloser, R. H. R. (2003). Stationary transmission distribution of random spike trains by dynamical synapses. Phys. Rev. E, 67, 022901.
    • (2003) Phys. Rev. E , vol.67 , pp. 022901
    • Hahnloser, R.H.R.1
  • 14
    • 0035278272 scopus 로고    scopus 로고
    • Shot noise in the leaky integrate-and-fire neuron
    • Hohn, N., & Burkitt, A. N. (2001). Shot noise in the leaky integrate-and-fire neuron. Phys. Rev. E, 63, 031902.
    • (2001) Phys. Rev. E , vol.63 , pp. 031902
    • Hohn, N.1    Burkitt, A.N.2
  • 15
    • 0041353445 scopus 로고    scopus 로고
    • Pyramidal cell communication within local networks in layer 2/3 of rat neocortex
    • Holmgren, C., Harkany, T., Svennenfors, B., & Zilberter, Y. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. London., 551, 139-153.
    • (2003) J. Physiol. London. , vol.551 , pp. 139-153
    • Holmgren, C.1    Harkany, T.2    Svennenfors, B.3    Zilberter, Y.4
  • 16
    • 0002525530 scopus 로고
    • Diffusion models for the stochastic activity of neurons
    • E. R. Caianello (Ed.), New York: Springer
    • Johannesma, P. I. M. (1968). Diffusion models for the stochastic activity of neurons. In E. R. Caianello (Ed.), Neural networks (pp. 116-144). New York: Springer.
    • (1968) Neural Networks , pp. 116-144
    • Johannesma, P.I.M.1
  • 17
    • 3142666109 scopus 로고    scopus 로고
    • Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy
    • Jolivet, R., Lewis, T. J., & Gerstner, W. (2004). Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol., 92, 959-976.
    • (2004) J. Neurophysiol. , vol.92 , pp. 959-976
    • Jolivet, R.1    Lewis, T.J.2    Gerstner, W.3
  • 18
    • 0031837771 scopus 로고    scopus 로고
    • Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity-dependent phase-precession of action potentials
    • Kamondi A., Acsady, L., Wang, X.-J., & Buzsaki, G. (1998). Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity-dependent phase-precession of action potentials. Hippocampus, 8, 244-261.
    • (1998) Hippocampus , vol.8 , pp. 244-261
    • Kamondi, A.1    Acsady, L.2    Wang, X.-J.3    Buzsaki, G.4
  • 19
    • 0037264955 scopus 로고    scopus 로고
    • Higher-order statistics of input ensembles and the response of simple model neurons
    • Kuhn, A., Aertsen, A., & Rotter, S. (2003). Higher-order statistics of input ensembles and the response of simple model neurons. Neural Comp., 15, 67-101.
    • (2003) Neural Comp. , vol.15 , pp. 67-101
    • Kuhn, A.1    Aertsen, A.2    Rotter, S.3
  • 20
    • 1542327624 scopus 로고    scopus 로고
    • Neuronal integration of synaptic input in the fluctuation-driven regime
    • Kuhn, A., Aertsen, A., & Rotter, S. (2004). Neuronal integration of synaptic input in the fluctuation-driven regime. J. Neurosci., 24, 2345-2356.
    • (2004) J. Neurosci. , vol.24 , pp. 2345-2356
    • Kuhn, A.1    Aertsen, A.2    Rotter, S.3
  • 21
    • 2542453867 scopus 로고    scopus 로고
    • Comparison between networks of conductance and current-driven neurons: Stationary spike rates and subthreshold depolarization
    • La Camera, G., Senn, W., & Fusi, S. (2004). Comparison between networks of conductance and current-driven neurons: Stationary spike rates and subthreshold depolarization. Neurocomputing, 58-60, 253-258.
    • (2004) Neurocomputing , vol.58-60 , pp. 253-258
    • La Camera, G.1    Senn, W.2    Fusi, S.3
  • 22
    • 0023130393 scopus 로고
    • Diffusion approximation of the neuronal model with synaptic reversal potentials
    • Lansky, P., & Lanska, V. (1987). Diffusion approximation of the neuronal model with synaptic reversal potentials. Biol. Cybern., 56, 19-26.
    • (1987) Biol. Cybern. , vol.56 , pp. 19-26
    • Lansky, P.1    Lanska, V.2
  • 23
    • 0033570816 scopus 로고    scopus 로고
    • Detecting and estimating signals in noisy cable structures, I: Neuronal noise sources
    • Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structures, I: Neuronal noise sources. Neural Comp., 11, 1797-1829.
    • (1999) Neural Comp. , vol.11 , pp. 1797-1829
    • Manwani, A.1    Koch, C.2
  • 24
    • 1542501657 scopus 로고    scopus 로고
    • An analytical model for the "large, fluctuating synaptic conductance state" typical of neocortical neurons in vivo
    • Meffin, H., Burkitt, A. N., & Grayden, D. B. (2004). An analytical model for the "large, fluctuating synaptic conductance state" typical of neocortical neurons in vivo. J. Comput. Neurosci., 16, 159-175.
    • (2004) J. Comput. Neurosci. , vol.16 , pp. 159-175
    • Meffin, H.1    Burkitt, A.N.2    Grayden, D.B.3
  • 25
    • 0037456572 scopus 로고    scopus 로고
    • Orientation and direction selectivity of synaptic inputs in visual cortical neurons: A diversity of combinations produces spike tuning
    • Monier, C., Chavane, F., Baudot, P., Graham, L. J., & Frégnac, Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: A diversity of combinations produces spike tuning. Neuron, 37, 663-680.
    • (2003) Neuron , vol.37 , pp. 663-680
    • Monier, C.1    Chavane, F.2    Baudot, P.3    Graham, L.J.4    Frégnac, Y.5
  • 26
    • 0037452590 scopus 로고    scopus 로고
    • Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation
    • Prescott, S. A., & De Koninck, Y. (2003). Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation. P. Natl. Acad. Sci., 200, 2076-2081.
    • (2003) P. Natl. Acad. Sci. , vol.200 , pp. 2076-2081
    • Prescott, S.A.1    De Koninck, Y.2
  • 27
    • 0141565240 scopus 로고    scopus 로고
    • Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents
    • Rauch, A., La Camera, G., Lüscher, H.-R., Senn, W., & Fusi, S. (2003). Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. J. Neurophysiol, 90, 1598-1612.
    • (2003) J. Neurophysiol , vol.90 , pp. 1598-1612
    • Rauch, A.1    La Camera, G.2    Lüscher, H.-R.3    Senn, W.4    Fusi, S.5
  • 28
    • 42749098503 scopus 로고    scopus 로고
    • Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons
    • Richardson, M. J. E. (2004). Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys. Rev. E, 69, 051918.
    • (2004) Phys. Rev. E , vol.69 , pp. 051918
    • Richardson, M.J.E.1
  • 30
    • 0012372074 scopus 로고
    • Master equation description of external Poisson white noise in finite systems
    • Rodriguez, M. A., Pesquera, L., San Miguel, M., & Sancho, J. M (1985). Master equation description of external Poisson white noise in finite systems. J. Stat. Phys., 40, 669-724.
    • (1985) J. Stat. Phys. , vol.40 , pp. 669-724
    • Rodriguez, M.A.1    Pesquera, L.2    San Miguel, M.3    Sancho, J.M.4
  • 31
    • 18044404268 scopus 로고    scopus 로고
    • Equilibrium properties of temporally asymmetric Hebbian plasticity
    • Rubin, J., Lee, D. D., & Sompolinsky, H. (2001). Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys. Rev. Lett., 86, 364-367.
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 364-367
    • Rubin, J.1    Lee, D.D.2    Sompolinsky, H.3
  • 32
    • 0141860842 scopus 로고    scopus 로고
    • Characterization of subthreshold voltage fluctuations in neuronal membranes
    • Rudolph, M., & Destexhe, A. (2003). Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Camput., 15, 2577-2618.
    • (2003) Neural Camput. , vol.15 , pp. 2577-2618
    • Rudolph, M.1    Destexhe, A.2
  • 33
    • 2442615811 scopus 로고    scopus 로고
    • A method to estimate synaptic conductances from membrane potential fluctuations
    • Rudolph, M., Piwkowska Z., Badoual, M., Bal, T., & Destexhe, A. (2004). A method to estimate synaptic conductances from membrane potential fluctuations. J. Neurophysiol, 91, 2884-2896.
    • (2004) J. Neurophysiol , vol.91 , pp. 2884-2896
    • Rudolph, M.1    Piwkowska, Z.2    Badoual, M.3    Bal, T.4    Destexhe, A.5
  • 34
    • 0033799036 scopus 로고    scopus 로고
    • Cellular and network mechanisms of rhythmic recurrent activity in neocortex
    • Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci., 3, 1027-1034.
    • (2000) Nat. Neurosci. , vol.3 , pp. 1027-1034
    • Sanchez-Vives, M.V.1    McCormick, D.A.2
  • 35
    • 1942517949 scopus 로고    scopus 로고
    • Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit
    • Silberberg, G., Wu, C. Z., & Markram, H. (2004). Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. J. Physiol-London, 556, 19-27.
    • (2004) J. Physiol-London , vol.556 , pp. 19-27
    • Silberberg, G.1    Wu, C.Z.2    Markram, H.3
  • 36
    • 11844290435 scopus 로고
    • A theoretical analysis of neuronal activity
    • Stein, R. B. (1965). A theoretical analysis of neuronal activity. Biophys. J., 5, 173-193.
    • (1965) Biophys. J. , vol.5 , pp. 173-193
    • Stein, R.B.1
  • 37
    • 84954086574 scopus 로고
    • Some models of neuronal variability
    • Stein, R. B. (1967). Some models of neuronal variability. Biophys. J., 7, 37-68.
    • (1967) Biophys. J. , vol.7 , pp. 37-68
    • Stein, R.B.1
  • 38
    • 0035458347 scopus 로고    scopus 로고
    • Correlation between uncoupled conductance-based integrate-and-fire neurons due to common and synchronous presynaptic firing
    • Stroeve, S., & Gielen, S. (2001). Correlation between uncoupled conductance-based integrate-and-fire neurons due to common and synchronous presynaptic firing. Neural. Camp., 13, 2005-2029.
    • (2001) Neural. Camp. , vol.13 , pp. 2005-2029
    • Stroeve, S.1    Gielen, S.2
  • 39
    • 0034352129 scopus 로고    scopus 로고
    • Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated currents
    • Tiesinga, P. H. E., José, J. V., & Sejnowski, T. J. (2000). Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated currents. Phys. Rev. E, 62, 8413-8419.
    • (2000) Phys. Rev. E , vol.62 , pp. 8413-8419
    • Tiesinga, P.H.E.1    José, J.V.2    Sejnowski, T.J.3
  • 40
    • 0018417617 scopus 로고
    • Synaptic transmission in a model for stochastic neural activity
    • Tuckwell, H. C. (1979). Synaptic transmission in a model for stochastic neural activity. J. Theor. Biol., 77, 65-81.
    • (1979) J. Theor. Biol. , vol.77 , pp. 65-81
    • Tuckwell, H.C.1
  • 42
    • 0034551719 scopus 로고    scopus 로고
    • Stable Hebbian learning from spike timing-dependent plasticity
    • van Rossum, M. C. W., Bi, G. Q., & Turrigiano, G. C. (2000). Stable Hebbian learning from spike timing-dependent plasticity. J. Neurosci., 20, 8812-8821.
    • (2000) J. Neurosci. , vol.20 , pp. 8812-8821
    • Rossum, M.C.W.1    Bi, G.Q.2    Turrigiano, G.C.3
  • 43
    • 0018650195 scopus 로고
    • The response of a spatially distributed neuron to white noise current injection
    • Wan, F. Y. M., & Tuckwell, H. C. (1979). The response of a spatially distributed neuron to white noise current injection. Biol. Cybern., 33, 39-55.
    • (1979) Biol. Cybern. , vol.33 , pp. 39-55
    • Wan, F.Y.M.1    Tuckwell, H.C.2
  • 44
    • 0021046151 scopus 로고
    • A theoretical basis for large coefficient of variation and bimodality in neuronal interspike distribution
    • Wilbur, W. J., & Rinzel, J. (1983). A theoretical basis for large coefficient of variation and bimodality in neuronal interspike distribution. J. Theor. Biol., 105, 345-368.
    • (1983) J. Theor. Biol. , vol.105 , pp. 345-368
    • Wilbur, W.J.1    Rinzel, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.