-
1
-
-
0031235249
-
A three-dimensional fictitious domain method for incompressible fluid flow problems
-
Bertrand, F., Tanguy, P. A., and Thibault, F. (1997). A three-dimensional fictitious domain method for incompressible fluid flow problems. Int. J. Num. Meth. Fluids 25, 719-736.
-
(1997)
Int. J. Num. Meth. Fluids
, vol.25
, pp. 719-736
-
-
Bertrand, F.1
Tanguy, P.A.2
Thibault, F.3
-
2
-
-
0031256329
-
A wave equation approach to the numerical simulation of the Navier-Stokes equations for incompressible viscous flows
-
Dean, E. J., and Glowinski, R. (1997). A wave equation approach to the numerical simulation of the Navier-Stokes equations for incompressible viscous flows. C. R. Acad. Sci. Parts 325, Série 1, 789-791.
-
(1997)
C. R. Acad. Sci. Parts
, vol.325
, Issue.1
, pp. 789-791
-
-
Dean, E.J.1
Glowinski, R.2
-
3
-
-
0002902041
-
A wave equation approach to the numerical simulation of incompressible viscous flow modeled by the Navier-Stokes equations
-
De Santo, J. A. (ed.), SIAM, Philadelphia, PA
-
Dean, E. J., Glowinski, R., and Pan, T. W. (1998). A wave equation approach to the numerical simulation of incompressible viscous flow modeled by the Navier-Stokes equations. In De Santo, J. A. (ed.), Mathematical and Numerical Aspects of Wave Propagation, SIAM, Philadelphia, PA, pp. 65-74.
-
(1998)
Mathematical and Numerical Aspects of Wave Propagation
, pp. 65-74
-
-
Dean, E.J.1
Glowinski, R.2
Pan, T.W.3
-
4
-
-
0028160288
-
Direct simulation of initial value problems for the motion of solid bodies in Newtonian fluid. Part 1. Sedimentation
-
Feng, J., Hu, H. H., and Joseph, D. D. (1994), Direct simulation of initial value problems for the motion of solid bodies in Newtonian fluid. Part 1. Sedimentation. J. Fluid Much. 261, 95-134.
-
(1994)
J. Fluid Much.
, vol.261
, pp. 95-134
-
-
Feng, J.1
Hu, H.H.2
Joseph, D.D.3
-
6
-
-
0001105507
-
A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow
-
Glowinski, R., Pan, T. W., Hesla, T., Joseph, D. D., and Périaux, J. (2001). A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Compta. Phys. 169, 363-426.
-
(2001)
J. Compta. Phys.
, vol.169
, pp. 363-426
-
-
Glowinski, R.1
Pan, T.W.2
Hesla, T.3
Joseph, D.D.4
Périaux, J.5
-
7
-
-
0003887107
-
-
SIAM, Philadelphia, PA
-
Glowinski, R., and Le Tallec, P. (1989). Augmented Lagrangians and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, PA.
-
(1989)
Augmented Lagrangians and Operator Splitting Methods in Nonlinear Mechanics
-
-
Glowinski, R.1
Le Tallec, P.2
-
8
-
-
0032857504
-
A distributed Lagrange multiplier/fictitious domain method for particulate flow
-
Glowinski, R., Pan, T. W., Hesla, T., and Joseph, D. D. (1999). A distributed Lagrange multiplier/fictitious domain method for particulate flow. Int. J. Multiphas. Flow 25, 755-794.
-
(1999)
Int. J. Multiphas. Flow
, vol.25
, pp. 755-794
-
-
Glowinski, R.1
Pan, T.W.2
Hesla, T.3
Joseph, D.D.4
-
9
-
-
0030111555
-
Direct simulation of flows of solid-liquid mixtures
-
Hu, H. H. (1996). Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphas. Flow 22, 335-352.
-
(1996)
Int. J. Multiphas. Flow
, vol.22
, pp. 335-352
-
-
Hu, H.H.1
-
10
-
-
70350504025
-
Splitting and alternating direction methods
-
Ciarlet, P. G., and Lions, J. L. (eds.), North-Holland, Amsterdam
-
Marchuk, G. I. (1990). Splitting and alternating direction methods. In Ciarlet, P. G., and Lions, J. L. (eds.), Handbook of Numerical Analysis, Vol. I, North-Holland, Amsterdam, pp. 197-462.
-
(1990)
Handbook of Numerical Analysis
, vol.1
, pp. 197-462
-
-
Marchuk, G.I.1
-
12
-
-
0015566427
-
A numerical solution of the Navier-Stokes equations using the finite element method
-
Taylor, C., and Hood, P. (1973). A numerical solution of the Navier-Stokes equations using the finite element method. Comput. & Fluids 1, 73-100.
-
(1973)
Comput. & Fluids
, vol.1
, pp. 73-100
-
-
Taylor, C.1
Hood, P.2
|