-
3
-
-
0346515178
-
On the maximum and its uniqueness for geometric random samples
-
Bruss, T. and O'Cinneide, C. (1990) On the maximum and its uniqueness for geometric random samples. J. Appl. Probab., 27, 598-610.
-
(1990)
J. Appl. Probab.
, vol.27
, pp. 598-610
-
-
Bruss, T.1
O'Cinneide, C.2
-
4
-
-
33747379005
-
The Ewens sampling formula
-
N.S. Johnson, S. Kotz and N. Balakrishnan (eds), New York: Wiley
-
Evvens, W.J. and Tavaré, S. (1997) The Ewens sampling formula. In N.S. Johnson, S. Kotz and N. Balakrishnan (eds), Discrete Midtivariate Distributions. New York: Wiley.
-
(1997)
Discrete Midtivariate Distributions
-
-
Evvens, W.J.1
Tavaré, S.2
-
6
-
-
0007554179
-
Singularity analysis and asymptotics of Bernoulli sums
-
Flajolet, P. (1999) Singularity analysis and asymptotics of Bernoulli sums. Theoret. Comput. Sci., 215, 371-381.
-
(1999)
Theoret. Comput. Sci.
, vol.215
, pp. 371-381
-
-
Flajolet, P.1
-
7
-
-
0031526261
-
The representation of composition structures
-
Gnedin, A.V. (1997) The representation of composition structures. Ann. Probab., 25, 1437-1450.
-
(1997)
Ann. Probab.
, vol.25
, pp. 1437-1450
-
-
Gnedin, A.V.1
-
8
-
-
0040757850
-
On the Poisson-Dirichlet limit
-
Gnedin, A.V. (1998) On the Poisson-Dirichlet limit. J. Multivariate Anal., 67, 90-98.
-
(1998)
J. Multivariate Anal.
, vol.67
, pp. 90-98
-
-
Gnedin, A.V.1
-
10
-
-
3142557127
-
Regenerative composition structures
-
Dept. of Statistics, University of California at Berkeley
-
Gnedin, A.V. and Pitman, J. (2003) Regenerative composition structures. Technical report 644, Dept. of Statistics, University of California at Berkeley.
-
(2003)
Technical Report
, vol.644
-
-
Gnedin, A.V.1
Pitman, J.2
-
12
-
-
0032642947
-
Entropy computations via analytic depoissonization
-
Jacquet, P. and Szpankowski, W. (1999) Entropy computations via analytic depoissonization. IEEE Trans. Inform. Theory, 45, 1072-1081.
-
(1999)
IEEE Trans. Inform. Theory
, vol.45
, pp. 1072-1081
-
-
Jacquet, P.1
Szpankowski, W.2
-
13
-
-
0039077680
-
Central limit theorems for certain infinite urn schemes
-
Karlin, S. (1967) Central limit theorems for certain infinite urn schemes. J. Math. Mech., 17, 373-401.
-
(1967)
J. Math. Mech.
, vol.17
, pp. 373-401
-
-
Karlin, S.1
-
14
-
-
0030496416
-
The number of winners in a discrete geometrically distributed sample
-
Kirschenhofer, P. and Prodinger, H. (1996) The number of winners in a discrete geometrically distributed sample. Ann. Appl. Probab., 6, 687-694.
-
(1996)
Ann. Appl. Probab.
, vol.6
, pp. 687-694
-
-
Kirschenhofer, P.1
Prodinger, H.2
-
15
-
-
0003707239
-
-
Toronto: University of Toronto Press
-
Lorenz, G. (1953) Bernstein Polynomials. Toronto: University of Toronto Press.
-
(1953)
Bernstein Polynomials
-
-
Lorenz, G.1
-
17
-
-
0242641721
-
Combinatorial stochastic processes
-
Dept. of Statistics, University of California at Berkeley
-
Pitman, J. (2002) Combinatorial stochastic processes. Technical report 621, Dept. of Statistics, University of California at Berkeley.
-
(2002)
Technical Report
, vol.621
-
-
Pitman, J.1
-
18
-
-
9644259154
-
On the analysis of stochastic divide and conquer algorithms
-
Rösler, U. (2001) On the analysis of stochastic divide and conquer algorithms. Algorithmica, 29, 238-261.
-
(2001)
Algorithmica
, vol.29
, pp. 238-261
-
-
Rösler, U.1
-
19
-
-
0002015483
-
The contraction method for recursive algorithms
-
Rösler, U. and Rüschendorf, L. (2001) The contraction method for recursive algorithms. Algorithmica, 29, 3-33.
-
(2001)
Algorithmica
, vol.29
, pp. 3-33
-
-
Rösler, U.1
Rüschendorf, L.2
|