-
2
-
-
0013235030
-
Bank mergers and banking structure in the United States, 1980-98
-
Board of Governors of the Federal Reserve System, Washington
-
S.A. Rhoades, Bank mergers and banking structure in the United States, 1980-98, Staff Studies, Vol. 174, Board of Governors of the Federal Reserve System, Washington, 2000.
-
(2000)
Staff Studies
, vol.174
-
-
Rhoades, S.A.1
-
3
-
-
0000715119
-
Incentives to form coalitions with Bertrand competition
-
Deneckere R., Davidson C. Incentives to form coalitions with Bertrand competition. RAND J. Econ. 16:1985;473-486.
-
(1985)
RAND J. Econ.
, vol.16
, pp. 473-486
-
-
Deneckere, R.1
Davidson, C.2
-
4
-
-
84881701153
-
Oligopoly and the incentive for horizontal merger
-
Perry M.K., Porter R.H. Oligopoly and the incentive for horizontal merger. Am. Econ. Rev. 75:1985;219-227.
-
(1985)
Am. Econ. Rev.
, vol.75
, pp. 219-227
-
-
Perry, M.K.1
Porter, R.H.2
-
5
-
-
0001262636
-
Horizontal mergers: An equilibrium analysis
-
Farrell J., Shapiro C. Horizontal mergers. an equilibrium analysis Am. Econ. Rev. 80:1990;107-126.
-
(1990)
Am. Econ. Rev.
, vol.80
, pp. 107-126
-
-
Farrell, J.1
Shapiro, C.2
-
6
-
-
0033446330
-
A dynamic model of endogenous horizontal mergers
-
Gowrisankaran G. A dynamic model of endogenous horizontal mergers. RAND J. Econ. 30:1999;56-83.
-
(1999)
RAND J. Econ.
, vol.30
, pp. 56-83
-
-
Gowrisankaran, G.1
-
13
-
-
0032623589
-
Zipf's law in income distribution of companies
-
Okuyama K., Takayasu M., Takayasu H. Zipf's law in income distribution of companies. Physica A. 269:1999;125-131.
-
(1999)
Physica A
, vol.269
, pp. 125-131
-
-
Okuyama, K.1
Takayasu, M.2
Takayasu, H.3
-
14
-
-
0035823152
-
Zipf distribution of US firm sizes
-
Axtell R.L. Zipf distribution of US firm sizes. Science. 293:2001;1818-1820.
-
(2001)
Science
, vol.293
, pp. 1818-1820
-
-
Axtell, R.L.1
-
15
-
-
0013034368
-
Zipf's law for cities: An explanation
-
Gabaix X. Zipf's law for cities. an explanation Q. J. Econ. 114:1999;739-767.
-
(1999)
Q. J. Econ.
, vol.114
, pp. 739-767
-
-
Gabaix, X.1
-
18
-
-
0034319321
-
Power laws in cities' populations, financial markets and internet sites (scaling in systems with a variable number of components)
-
Blank A., Solomon S. Power laws in cities' populations, financial markets and internet sites (scaling in systems with a variable number of components). Physica A. 289:2000;279-288.
-
(2000)
Physica A
, vol.289
, pp. 279-288
-
-
Blank, A.1
Solomon, S.2
-
19
-
-
0001474588
-
Power-laws in economics and finance: Some ideas from physics
-
Bouchaud J.-P. Power-laws in economics and finance. some ideas from physics Quantitative Finance. 1:2001;105-112.
-
(2001)
Quantitative Finance
, vol.1
, pp. 105-112
-
-
Bouchaud, J.-P.1
-
20
-
-
85011188908
-
The integration of the financial services industry: Where are the efficiencies?
-
Berger A.N. The integration of the financial services industry. where are the efficiencies? North Am. Actuarial J. 4:2000;25-45.
-
(2000)
North Am. Actuarial J.
, vol.4
, pp. 25-45
-
-
Berger, A.N.1
-
21
-
-
0001138912
-
Drei Vorträge über Diffusion, Brownische Bewegung und Koagulation von Kolloidteilchen
-
von Smoluchowski M. Drei Vorträge über Diffusion, Brownische Bewegung und Koagulation von Kolloidteilchen. Physik. Z. 17:1916;557-585.
-
(1916)
Physik. Z.
, vol.17
, pp. 557-585
-
-
Von Smoluchowski, M.1
-
22
-
-
0036470749
-
Self-similarity theory of stationary coagulation
-
Pushkin D.O., Aref H. Self-similarity theory of stationary coagulation. Phys. Fluids. 14:2002;694-703.
-
(2002)
Phys. Fluids
, vol.14
, pp. 694-703
-
-
Pushkin, D.O.1
Aref, H.2
-
24
-
-
0001263124
-
A simple general approach to inference about the tail of a distribution
-
Hill B.M. A simple general approach to inference about the tail of a distribution. Ann. Statist. 3(5):1975;1163-1174.
-
(1975)
Ann. Statist.
, vol.3
, Issue.5
, pp. 1163-1174
-
-
Hill, B.M.1
-
25
-
-
0001140480
-
A general mathematical survey of the coagulation equation
-
Pergamon Press, Oxford
-
R.L. Drake, A general mathematical survey of the coagulation equation, Topics in Current Aerosol Research, Vol. 2, Pergamon Press, Oxford, 1972, pp. 201-376.
-
(1972)
Topics in Current Aerosol Research
, vol.2
, pp. 201-376
-
-
Drake, R.L.1
-
26
-
-
0001067872
-
Mean-field modeling of polymerization: The Smoluchowski coagulation equation
-
Galina H., Lechowicz B. Mean-field modeling of polymerization. the Smoluchowski coagulation equation Adv. Polym. Sci. 137:1998;135-172.
-
(1998)
Adv. Polym. Sci.
, vol.137
, pp. 135-172
-
-
Galina, H.1
Lechowicz, B.2
-
28
-
-
0242508173
-
Comparison of analytical and physical modeling of planetesimal accumulation
-
Wetherill G.H. Comparison of analytical and physical modeling of planetesimal accumulation. Icarus. 88:1990;336-354.
-
(1990)
Icarus
, vol.88
, pp. 336-354
-
-
Wetherill, G.H.1
-
30
-
-
0035334069
-
Scaling properties of scale-free evolving networks: Continuous approach
-
Dorogovtsev S.N., Mendes J.F.F. Scaling properties of scale-free evolving networks. continuous approach Phys. Rev. E. 63(5):2001;056125.
-
(2001)
Phys. Rev. E
, vol.63
, Issue.5
, pp. 056125
-
-
Dorogovtsev, S.N.1
Mendes, J.F.F.2
-
33
-
-
0002451890
-
Lectures on phase transitions and the renormalization group
-
Reading, MA: Addison-Wesley
-
Goldenfeld N. Lectures on phase transitions and the renormalization group. Frontiers in Physics. Vol. 85:1992;Addison-Wesley, Reading, MA.
-
(1992)
Frontiers in Physics
, vol.85
-
-
Goldenfeld, N.1
-
34
-
-
1842631415
-
The self-preserving particle size distribution for coagulation by Brownian motion
-
Friedlander S.K., Wang C.S. The self-preserving particle size distribution for coagulation by Brownian motion. J. Colloid Interface Sci. 22:1966;126-132.
-
(1966)
J. Colloid Interface Sci.
, vol.22
, pp. 126-132
-
-
Friedlander, S.K.1
Wang, C.S.2
-
35
-
-
33747627898
-
Scaling solution of Smoluchowski's coagulation equation
-
van Dongen P.G.J., Ernst M.H. Scaling solution of Smoluchowski's coagulation equation. J. Stat. Phys. 50:1988;295-329.
-
(1988)
J. Stat. Phys.
, vol.50
, pp. 295-329
-
-
Van Dongen, P.G.J.1
Ernst, M.H.2
-
36
-
-
0001796185
-
Deterministic and stochastic model for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists
-
Aldous D.J. Deterministic and stochastic model for coalescence (aggregation, coagulation). a review of the mean-field theory for probabilists Bernoulli. 5:1999;3-48.
-
(1999)
Bernoulli
, vol.5
, pp. 3-48
-
-
Aldous, D.J.1
|