-
1
-
-
0035607690
-
The Hall algebra of the category of coherent sheaves on the projective line
-
P. BAUMANN and C. KASSEL, The Hall algebra of the category of coherent sheaves on the projective line, J. Reine Angew. Math. 533 (2001), 207-233.
-
(2001)
J. Reine Angew. Math
, vol.533
, pp. 207-233
-
-
Baumann, P.1
Kassel, C.2
-
2
-
-
21844515873
-
Braid group action and quantum affine algebras
-
J. BECK, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), 555-568.
-
(1994)
Comm. Math. Phys
, vol.165
, pp. 555-568
-
-
Beck, J.1
-
3
-
-
0002599226
-
Representations of associative algebras and coherent sheaves (In Russian)
-
A. I. BONDAL, Representations of associative algebras and coherent sheaves (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat. 53, no. 1 (1989), 25-44.
-
(1989)
Izv. Akad. Nauk. SSSR Ser. Mat
, vol.53
, Issue.1
, pp. 25-44
-
-
Bondal, A.I.1
-
4
-
-
0002628241
-
Representations of associative algebras and coherent sheaves (In Russian)
-
A. I. BONDAL, Representations of associative algebras and coherent sheaves (in Russian), English translation in Math. USSR-Izv. 34 (1990), 23-42.
-
(1990)
English Translation in Math. Ussr-Izv
, vol.34
, pp. 23-42
-
-
Bondal, A.I.1
-
6
-
-
1542718385
-
Absolutely indecomposable representations andKac-Moody Lie algebras
-
appendix by H. Nakajima, to appear
-
B. CRAWLEY-BOEVEY and M. VAN DEN BERGH, Absolutely indecomposable representations andKac-Moody Lie algebras, appendix by H. Nakajima, to appear in Invent. Math., preprint, D0I:10.1007/s00222-003-0329-0 163
-
Invent. Math
-
-
Crawley-Boevey, B.1
Van Den Bergh, M.2
-
7
-
-
1642583668
-
PBWand duality theorems for quantum groups and quantum current algebras
-
B. ENRIQUEZ, PBWand duality theorems for quantum groups and quantum current algebras, J. Lie Theory 13 (2003), 21-64.
-
(2003)
J. Lie Theory
, vol.13
, pp. 21-64
-
-
Enriquez, B.1
-
8
-
-
0000630548
-
A class of weighted projective curves arising in the representation theory of finite-dimensional algebras
-
(Lambrecht, Germany, 1985), Lecture Notes in Math, Springer, Berlin
-
W. GEIGLE and H. LENZING, “A class of weighted projective curves arising in the representation theory of finite-dimensional algebras” in Singularities, Representations of Algebras and Vector Bundles (Lambrecht, Germany, 1985), Lecture Notes in Math. 1273, Springer, Berlin, 1987, 265-297.
-
(1987)
Singularities, Representations of Algebras and Vector Bundles
, vol.1273
, pp. 265-297
-
-
Geigle, W.1
Lenzing, H.2
-
9
-
-
0001471510
-
The algebra of partitions
-
(Banff, Canada, 1957), Univ. of Toronto Press, Toronto
-
P. HALL, “The algebra of partitions” in Proceedings of the Fourth Canadian Mathematical Congress (Banff, Canada, 1957), Univ. of Toronto Press, Toronto, 1959, 147-159.
-
(1959)
Proceedings of the Fourth Canadian Mathematical Congress
, pp. 147-159
-
-
Hall, P.1
-
10
-
-
0003275895
-
Triangulated categories in the representation theory of finite-dimensional algebras
-
Cambridge Univ. Press., Cambridge
-
D. HAPPEL, Triangulated categories in the representation theory of finite-dimensional algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press., Cambridge, 1988.
-
(1988)
London Math. Soc. Lecture Note Ser
, vol.119
-
-
Happel, D.1
-
11
-
-
0035593166
-
A characterization of hereditary categories with tilting object
-
D. HAPPEL, A characterization of hereditary categories with tilting object, Invent. Math. 144 (2001), 381-398.
-
(2001)
Invent. Math
, vol.144
, pp. 381-398
-
-
Happel, D.1
-
13
-
-
0000452685
-
Eisenstein series and quantum affine algebras
-
J. Math. Sci. (New York), Consultants Bureau, New York
-
M. M. KAPRANOV, “Eisenstein series and quantum affine algebras” in Algebraic Geometry, 7, J. Math. Sci. (New York) 84, Consultants Bureau, New York, 1997, 1311-1360.
-
(1997)
Algebraic Geometry
, vol.7
, Issue.84
, pp. 1311-1360
-
-
Kapranov, M.M.1
-
14
-
-
0008058553
-
Regular Solids and Isolated Singularities
-
Braunschweig, Germany
-
K. LAMOTKE, Regular Solids and Isolated Singularities, Adv. Lectures Math., Vieweg, Braunschweig, Germany, 1986.
-
(1986)
Adv. Lectures Math., Vieweg
-
-
Lamotke, K.1
-
15
-
-
0001102419
-
Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials
-
(Kyoto, 1998), Adv. Stud. Pure Math, Kinokuniya, Tokyo
-
B. LECLERC and J.-Y THIBON, “Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials” in Combinatorial Methods in Representation Theory (Kyoto, 1998), Adv. Stud. Pure Math. 28, Kinokuniya, Tokyo, 2000, 155-220.
-
(2000)
Combinatorial Methods in Representation Theory
, vol.28
, pp. 155-220
-
-
Leclerc, B.1
Thibon, J.-Y.2
-
16
-
-
0001639194
-
Curve singularities arising from the representation theory of tame hereditary algebras
-
(Ottawa, Canada, 1984), Lecture Notes in Math, Springer, Berlin
-
H. LENZING, “Curve singularities arising from the representation theory of tame hereditary algebras” in Representation Theory, I (Ottawa, Canada, 1984), Lecture Notes in Math. 1177, Springer, Berlin, 1986, 199-231.
-
(1986)
Representation Theory
, vol.1177
, pp. 199-231
-
-
Lenzing, H.1
-
17
-
-
0000869926
-
Sheaves on a weighted projective line of genus one, and representations of a tubular algebra
-
(Ottawa, Canada, 1992), CMS Conf. Proc, Amer. Math. Soc., Providence
-
H. LENZING and H. MELTZER, “Sheaves on a weighted projective line of genus one, and representations of a tubular algebra” in Representations of Algebras (Ottawa, Canada, 1992), CMS Conf. Proc. 14, Amer. Math. Soc., Providence, 313-337.
-
Representations of Algebras
, vol.14
, pp. 313-337
-
-
Lenzing, H.1
Meltzer, H.2
-
18
-
-
1642599497
-
2 -extended affine Lie algebras and tubular algebras
-
appear in
-
Y. LIN and L. PENG, 2 -extended affine Lie algebras and tubular algebras, to appear in Adv. Math. 114
-
Adv. Math
, vol.114
-
-
Lin, Y.1
Peng, L.2
-
19
-
-
0003361511
-
Introduction to Quantum Groups
-
Birkhauser, Boston
-
G. LUSZTIG, Introduction to Quantum Groups, Progr. Math. 110, Birkhauser, Boston, 1993.
-
(1993)
Progr. Math
, vol.110
-
-
Lusztig, G.1
-
21
-
-
0001473466
-
Toroidal Lie algebras and vertex representations
-
R. V. MOODY, S. E. RAO, and T. YOKONUMA, Toroidal Lie algebras and vertex representations, Geom. Dedicata 35 (1990), 283-307.
-
(1990)
Geom. Dedicata
, vol.35
, pp. 283-307
-
-
Moody, R.V.1
Rao, S.E.2
Yokonuma, T.3
-
22
-
-
0000147176
-
Quiver varieties and Kac-Moody algebras
-
H. NAKAJIMA, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560.
-
(1998)
Duke Math. J
, vol.91
, pp. 515-560
-
-
Nakajima, H.1
-
23
-
-
0034349070
-
Triangulated categories and Kac-Moody algebras
-
L. PENG AND J. XIAO, Triangulated categories and Kac-Moody algebras, Invent. Math. 140 (2000), 563-603.
-
(2000)
Invent. Math
, vol.140
, pp. 563-603
-
-
Xiao, L.1
-
24
-
-
0038129902
-
The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli
-
M. REINEKE, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003), 349-368.
-
(2003)
Invent. Math
, vol.152
, pp. 349-368
-
-
Reineke, M.1
-
25
-
-
0003033541
-
Tame Algebras and Integral Quadratic Forms
-
Springer, Berlin
-
C. M. RINGEL, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
-
(1984)
Lecture Notes in Math
, vol.1099
-
-
Ringel, C.M.1
-
26
-
-
0000827429
-
Hall algebras and quantum groups
-
C. M. RINGEL, Hall algebras and quantum groups, Invent. Math. 101 (1990), 583-591.
-
(1990)
Invent. Math
, vol.101
, pp. 583-591
-
-
Ringel, C.M.1
-
27
-
-
0001632087
-
Hall algebras
-
(Warsaw, 1988), Banach Center Publ. 26, PWN, Warsaw
-
C. M. RINGEL, “Hall algebras” in Topics in Algebra, Part 1 (Warsaw, 1988), Banach Center Publ. 26, PWN, Warsaw, 1990, 433-447.
-
(1990)
Topics in Algebra
, pp. 433-447
-
-
Ringel, C.M.1
-
28
-
-
0001057520
-
The Hall algebra of a cyclic quiver and canonical bases of Fock spaces, Internat
-
O. SCHIFFMANN, The Hall algebra of a cyclic quiver and canonical bases of Fock spaces, Internat. Math. Res. Notices 2000, no. 8, 413-440.
-
(2000)
Math. Res. Notices
, vol.8
, pp. 413-440
-
-
Schiffmann, O.1
|