-
2
-
-
0030219251
-
Nonlinear chemical dynamics: Oscillations, patterns and chaos
-
I. R. Epstein and K. Showalter, Nonlinear chemical dynamics: Oscillations, patterns and chaos, J. Phys. Chem., 100 (1996), pp. 13132-13147.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 13132-13147
-
-
Epstein, I.R.1
Showalter, K.2
-
4
-
-
0034721176
-
Oscillatory cluster patterns in a homogeneous chemical system with global feedback
-
V. K. Vanag, L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R. Epstein, Oscillatory cluster patterns in a homogeneous chemical system with global feedback, Nature, 406 (2000), pp. 389-391.
-
(2000)
Nature
, vol.406
, pp. 389-391
-
-
Vanag, V.K.1
Yang, L.2
Dolnik, M.3
Zhabotinsky, A.M.4
Epstein, I.R.5
-
5
-
-
0037984245
-
Pattern formation in the Belousov-Zhabotinsky reaction with photochemical global feedback
-
V.K. Vanag, A. M. Zhabotinsky, and I. R. Epstein, Pattern formation in the Belousov-Zhabotinsky reaction with photochemical global feedback, J. Phys. Chem., 104A (2000), pp. 11566-11577.
-
(2000)
J. Phys. Chem.
, vol.104 A
, pp. 11566-11577
-
-
Vanag, V.K.1
Zhabotinsky, A.M.2
Epstein, I.R.3
-
6
-
-
0034318341
-
Oscillatory clusters in a model of the photosensitive Belousov-Zhabotinsky reaction system with global feedback
-
L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R. Epstein, Oscillatory clusters in a model of the photosensitive Belousov-Zhabotinsky reaction system with global feedback, Phys. Rev. E, 62 (2000), pp. 6414-6420.
-
(2000)
Phys. Rev. E
, vol.62
, pp. 6414-6420
-
-
Yang, L.1
Dolnik, M.2
Zhabotinsky, A.M.3
Epstein, I.R.4
-
7
-
-
0000775151
-
Oscillations and waves in metal-ion-catalyzed bromate oscillating reactions in highly oxidized states
-
A. M. Zhabotinsky, F. Buchholtz, A. B. Kiyatkin, and I. R. Epstein, Oscillations and waves in metal-ion-catalyzed bromate oscillating reactions in highly oxidized states, J. Phys. Chem., 97 (1993), pp. 7578-7584.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 7578-7584
-
-
Zhabotinsky, A.M.1
Buchholtz, F.2
Kiyatkin, A.B.3
Epstein, I.R.4
-
8
-
-
0031165393
-
Localized synchronization of two coupled solid state lasers
-
R. Kuske and T. Erneux, Localized synchronization of two coupled solid state lasers, Optics Communications, 139 (1997), pp. 125-131.
-
(1997)
Optics Communications
, vol.139
, pp. 125-131
-
-
Kuske, R.1
Erneux, T.2
-
9
-
-
0031476432
-
Bifurcation to localized oscillations
-
R. Kuske and T. Erneux, Bifurcation to localized oscillations, European J. Appl. Math., 8 (1997), pp. 389-402.
-
(1997)
European J. Appl. Math.
, vol.8
, pp. 389-402
-
-
Kuske, R.1
Erneux, T.2
-
10
-
-
33751548028
-
Oscillatory instability induced by mass interchange between two coupled steady-state reactors
-
M. Boukalouch, J. Elezgaray, A. Arneodo, J. Boissonade, and P. De Kepper, Oscillatory instability induced by mass interchange between two coupled steady-state reactors, J. Phys. Chem., 91 (1987), pp. 5843-5845.
-
(1987)
J. Phys. Chem.
, vol.91
, pp. 5843-5845
-
-
Boukalouch, M.1
Elezgaray, J.2
Arneodo, A.3
Boissonade, J.4
De Kepper, P.5
-
12
-
-
0003297685
-
Relaxation oscillations including a standard chase on French ducks
-
Springer-Verlag, Berlin
-
W. Eckhaus, Relaxation oscillations including a standard chase on French ducks, in Asymptotic Analysis, II, Lecture Notes in Math. 985, Springer-Verlag, Berlin, 1983, pp. 449-497.
-
(1983)
Asymptotic Analysis, II, Lecture Notes in Math.
, vol.985
, pp. 449-497
-
-
Eckhaus, W.1
-
13
-
-
0001547053
-
Singular Hopf bifurcation to relaxation oscillations
-
S.M. Baer and T. Erneux, Singular Hopf bifurcation to relaxation oscillations, SIAM J. Appl. Math., 46 (1986), pp. 721-739.
-
(1986)
SIAM J. Appl. Math.
, vol.46
, pp. 721-739
-
-
Baer, S.M.1
Erneux, T.2
-
14
-
-
0001938848
-
-
IRMA, Strasbourg, France
-
E. Benoit, J. L. Callot, F. Dienner, and M. Dienner, Chasse au Canard, IRMA, Strasbourg, France, 1980.
-
(1980)
Chasse au Canard
-
-
Benoit, E.1
Callot, J.L.2
Dienner, F.3
Dienner, M.4
-
15
-
-
0035839416
-
Relaxation oscillation and canard explosion
-
M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations, 174 (2001), pp. 312-368.
-
(2001)
J. Differential Equations
, vol.174
, pp. 312-368
-
-
Krupa, M.1
Szmolyan, P.2
-
16
-
-
0036052772
-
Extending geometric singular perturbation theory to nonhyperbolic points - Fold and canard points in two dimensions
-
M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points - fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), pp. 286-314.
-
(2001)
SIAM J. Math. Anal.
, vol.33
, pp. 286-314
-
-
Krupa, M.1
Szmolyan, P.2
-
17
-
-
0013630323
-
Canard explosion and excitation in a model of the BZ reaction
-
M. Brons and K. Bar-Eli, Canard explosion and excitation in a model of the BZ reaction, J. Phys. Chem., 95 (1991), pp. 8706-8713.
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 8706-8713
-
-
Brons, M.1
Bar-Eli, K.2
-
18
-
-
0042865280
-
Diffusion-induced instabilities near a canard
-
F. Buchholtz, M. Dolnik, and I. R. Epstein, Diffusion-induced instabilities near a canard, J. Phys. Chem., 99 (1995), pp. 15093-15101.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 15093-15101
-
-
Buchholtz, F.1
Dolnik, M.2
Epstein, I.R.3
-
19
-
-
1642576104
-
Canard phenomenon and localization of oscillations in the Belousov-Zhabotinsky reaction with global feedback
-
submitted
-
H. G. Rotstein, N. Kopell, A. Zhabotinsky, and I. R. Epstein, Canard phenomenon and localization of oscillations in the Belousov-Zhabotinsky reaction with global feedback, submitted.
-
-
-
Rotstein, H.G.1
Kopell, N.2
Zhabotinsky, A.3
Epstein, I.R.4
-
21
-
-
1642576103
-
Localized oscillations in a coupled two-pool model. A canard mechanism
-
in preparation
-
H. G. Rotstein, R. Kuske, and N. Kopell, Localized Oscillations in a Coupled Two-Pool Model. A Canard Mechanism, in preparation.
-
-
-
Rotstein, H.G.1
Kuske, R.2
Kopell, N.3
-
22
-
-
1642494730
-
Numerical analysis, PWS publishing, Boston, 1980
-
R. L. Burden and J. D. Faires, Numerical Analysis, PWS Publishing, Boston, 1980.
-
-
-
Burden, R.L.1
Faires, J.D.2
-
23
-
-
53349102813
-
Impulses and physiological states in models of nerve membrane
-
R. FitzHugh, Impulses and physiological states in models of nerve membrane, Biophys. J., 1 (1961), pp. 445-466.
-
(1961)
Biophys. J.
, vol.1
, pp. 445-466
-
-
FitzHugh, R.1
-
27
-
-
0002336002
-
Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations
-
D. Schlomiuk, ed., Kluwer Academic Press, Dordrecht, The Netherlands
-
F. Dumortier, Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, in Bifurcations and Periodic Orbits of Vector Fields, D. Schlomiuk, ed., Kluwer Academic Press, Dordrecht, The Netherlands, 1993, pp. 19-73.
-
(1993)
Bifurcations and Periodic Orbits of Vector Fields
, pp. 19-73
-
-
Dumortier, F.1
-
28
-
-
0035127351
-
Oscillatory clusters in the periodically illuminated, spatially extended Belousov-Zhabotinsky reaction
-
V. K. Vanag, A. M. Zhabotinsky, and I. R. Epstein, Oscillatory clusters in the periodically illuminated, spatially extended Belousov-Zhabotinsky reaction, Phys. Rev. Lett., 86 (2001), pp. 552-555.
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 552-555
-
-
Vanag, V.K.1
Zhabotinsky, A.M.2
Epstein, I.R.3
|