-
1
-
-
0000396062
-
Natural gradient works efficiently in learning
-
Amari S. Natural gradient works efficiently in learning Neural Comput. 10 1998 251-276
-
(1998)
Neural Comput.
, vol.10
, pp. 251-276
-
-
Amari, S.1
-
2
-
-
0036952875
-
Blind signal separation and independent component analysis
-
Amari S.-I. Hyvarinen A. Lee S.-Y. et-al. Blind signal separation and independent component analysis Neurocomputing 49 2002 1-5
-
(2002)
Neurocomputing
, vol.49
, pp. 1-5
-
-
Amari, S.-I.1
Hyvarinen, A.2
Lee, S.-Y.3
-
3
-
-
0003372875
-
Methods of information geometry
-
American Mathematical Society and Oxford University Press
-
S. Amari, H. Nagaoka, Methods of information geometry, Translations of Mathematical Monographs, Vol. 191, American Mathematical Society and Oxford University Press, 2000.
-
(2000)
Translations of Mathematical Monographs
, vol.191
-
-
Amari, S.1
Nagaoka, H.2
-
4
-
-
34447266299
-
Blind signal separation: Statistical principles, special issue on blind identification and estimation
-
R.-W. Liu, L. Tong (Eds.)
-
J.-F. Cardoso, Blind signal separation: statistical principles, special issue on blind identification and estimation, in: R.-W. Liu, L. Tong (Eds.), Proc. IEEE 90 (1998) 2009-2026.
-
(1998)
Proc. IEEE
, vol.90
, pp. 2009-2026
-
-
Cardoso, J.-F.1
-
6
-
-
1642523939
-
-
CBCL Face Database #1, MIT Center For Biological and Computation Learning, available online, see
-
CBCL Face Database #1, MIT Center For Biological and Computation Learning, available online, see http://www.ai.mit.edu/projects/cbcl.
-
-
-
-
7
-
-
0028416938
-
Independent component analysis: A new concept?
-
Comon P. Independent component analysis: a new concept? Signal Process. 36 1994 287-314
-
(1994)
Signal Process.
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
8
-
-
0002515425
-
Natural gradient adaptation
-
S. Haykin (Ed.), New York: Wiley
-
Douglas S.C. Amari S. Natural gradient adaptation, in: Haykin S. (Ed.), Unsupervised Adaptive Filtering Blind Source Separation Vol. 1 2000 13-61 Wiley New York
-
(2000)
Unsupervised Adaptive Filtering
, vol.1
, pp. 13-61
-
-
Douglas, S.C.1
Amari, S.2
-
9
-
-
84857841726
-
Non-negative sparse coding
-
Proceedings of IEEE Workshop on Neural Networks for Signal Processing 2002, Martigny, Switzerland
-
P.O. Hoyer, Non-negative sparse coding, in: Neural Networks for Signal Processing XII, Proceedings of IEEE Workshop on Neural Networks for Signal Processing 2002, Martigny, Switzerland, pp. 557-565.
-
(2002)
Neural Networks for Signal Processing XII
, pp. 557-565
-
-
Hoyer, P.O.1
-
10
-
-
0037780988
-
Modeling receptive fields with non-negative sparse coding
-
Hoyer P.O. Modeling receptive fields with non-negative sparse coding Neurocomputing 52-54 2003 547-552
-
(2003)
Neurocomputing
, vol.52-54
, pp. 547-552
-
-
Hoyer, P.O.1
-
11
-
-
0036284161
-
A multi-layer sparse coding network learns contour coding from natural images
-
Hoyer P.O. Hyvärinen A. A multi-layer sparse coding network learns contour coding from natural images Vision Res. 42 2002 1593-1605
-
(2002)
Vision Res.
, vol.42
, pp. 1593-1605
-
-
Hoyer, P.O.1
Hyvärinen, A.2
-
12
-
-
0033592606
-
Learning the parts of objects with nonnegative matrix factorization
-
Lee D.D. Seung H.S. Learning the parts of objects with nonnegative matrix factorization Nature 401 1999 788-791
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
13
-
-
84898964201
-
Algorithms for nonnegative matrix factorization
-
T. Leen, T. Dietterich, V. Tresp (Eds.), MIT Press, Cambridge, MA, November
-
D.D. Lee, H.S. Seung, Algorithms for nonnegative matrix factorization, in: T. Leen, T. Dietterich, V. Tresp (Eds.), Advances in Neural Information Processing Systems, Vol. 13, MIT Press, Cambridge, MA, November 2001, pp. 556-562.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
14
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
Olshausen B.A. Field D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images Nature 381 1996 607-609
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
15
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
Paatero P. Tapper U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values Environmetrics 5 1994 111-126
-
(1994)
Environmetrics
, vol.5
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
16
-
-
0038460232
-
Algorithms for non-negative independent component analysis
-
Plumbley M.D. Algorithms for non-negative independent component analysis IEEE Trans. Neural Networks 14 2003 534-543
-
(2003)
IEEE Trans. Neural Networks
, vol.14
, pp. 534-543
-
-
Plumbley, M.D.1
-
17
-
-
84898965722
-
Multiplicative updates for classification by mixture models
-
T.G. Dietterich, S. Becker, Z. Ghahramani (Eds.), MIT Press, Cambridge, MA, December
-
L.K. Saul, D.D. Lee, Multiplicative updates for classification by mixture models, in: T.G. Dietterich, S. Becker, Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems, Vol. 14, MIT Press, Cambridge, MA, December 2002, pp. 897-904.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 897-904
-
-
Saul, L.K.1
Lee, D.D.2
-
18
-
-
26744451702
-
Review on nonnegative matrix factorization
-
Technical Report, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University
-
Weixiang Liu, Nanning Zheng, Review on nonnegative matrix factorization, Technical Report, Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, 2003.
-
(2003)
-
-
Weixiang, L.1
Nanning, Z.2
-
19
-
-
0347478104
-
Learning sparse features for classification by mixture models
-
Liu Weixiang Zheng Nanning Learning sparse features for classification by mixture models Pattern Recognition Lett. 25 2004 155-161
-
(2004)
Pattern Recognition Lett.
, vol.25
, pp. 155-161
-
-
Liu, W.1
Zheng, N.2
-
20
-
-
1642564819
-
Multiplicative updating rule for blind separation derived from the method of scoring
-
M.J. Jordan, M. Kearns, S.A. Solla (Eds.), MIT Press, Cambridge, MA, December
-
H.H. Yang, Multiplicative updating rule for blind separation derived from the method of scoring, in: M.J. Jordan, M. Kearns, S.A. Solla (Eds.), Advances in Neural Information Processing Systems, Vol. 10, MIT Press, Cambridge, MA, December 1998, pp. 696-702.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 696-702
-
-
Yang, H.H.1
|