메뉴 건너뛰기




Volumn 52, Issue 1, 2004, Pages 49-60

The General Common Hermitian Nonnegative-definite Solution to the Matrix Equations AxA* = B and CxC* = D

Author keywords

Equivalent decomposition; Hermitian nonnegative definite solution; Hermitian positive definite solution; Matrix equation; Moore Penrose generalized inverse; Numerical reliability; Singular value decomposition

Indexed keywords


EID: 1642477928     PISSN: 03081087     EISSN: None     Source Type: Journal    
DOI: 10.1080/0308108031000122498     Document Type: Article
Times cited : (3)

References (10)
  • 1
    • 0038425666 scopus 로고
    • Nonnegative definite and positive definite solutions to the matrix equation AXA* = B
    • J.K. Baksalary (1984). Nonnegative definite and positive definite solutions to the matrix equation AXA* = B. Linear and Multilinear Algebra, 16, 133-139.
    • (1984) Linear and Multilinear Algebra , vol.16 , pp. 133-139
    • Baksalary, J.K.1
  • 2
    • 18144433136 scopus 로고    scopus 로고
    • Nonnegative-define and positive solutions to the matrix equation AXA* = B- revisited
    • J. Groß (2000). Nonnegative-define and positive solutions to the matrix equation AXA* = B- revisited. Linear Algebra Appl., 321, 123-129.
    • (2000) Linear Algebra Appl. , vol.321 , pp. 123-129
    • Groß, J.1
  • 3
    • 0038763665 scopus 로고
    • Hermitian and nonnegative definite solutions of linear matrix equations
    • C.G. Khatri, and S.K. Mitra (1976). Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math., 31, 579-585.
    • (1976) SIAM J. Appl. Math. , vol.31 , pp. 579-585
    • Khatri, C.G.1    Mitra, S.K.2
  • 4
    • 0038638353 scopus 로고    scopus 로고
    • The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B
    • accepted
    • X. Zhang, and M.Y. Cheng (2003). The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B. Linear Algebra Appl. (accepted).
    • (2003) Linear Algebra Appl.
    • Zhang, X.1    Cheng, M.Y.2
  • 5
    • 0037749341 scopus 로고    scopus 로고
    • Linear matrix equations from an inverse problem of vibration theory
    • H. Dai, and P. Lancaster (1996). Linear matrix equations from an inverse problem of vibration theory. Linear Algebra Appl., 246, 31-47.
    • (1996) Linear Algebra Appl. , vol.246 , pp. 31-47
    • Dai, H.1    Lancaster, P.2
  • 6
    • 0347884309 scopus 로고    scopus 로고
    • Hermitian and nonnegative definite solutions of linear matrix equations
    • J. Groß (1998). Hermitian and nonnegative definite solutions of linear matrix equations. Bull. Malay. Math. Soc., 21, 57-62.
    • (1998) Bull. Malay. Math. Soc. , vol.21 , pp. 57-62
    • Groß, J.1
  • 7
    • 0343621607 scopus 로고    scopus 로고
    • Independence distribution preserving covariance structures for themultivariate model
    • D.M. Young, J.W. Seaman Jr. and L.M. Meaux (1999). Independence distribution preserving covariance structures for themultivariate model. J. Multivariate Anal., 68, 165-175.
    • (1999) J. Multivariate Anal. , vol.68 , pp. 165-175
    • Young, D.M.1    Seaman Jr., J.W.2    Meaux, L.M.3
  • 8
    • 0033269615 scopus 로고    scopus 로고
    • Some inequalities on generalized Schur complements
    • B.Y. Wang, X. Zhang and F. Zhang (1999). Some inequalities on generalized Schur complements. Linear Algebra Appl., 302-303, 163-172.
    • (1999) Linear Algebra Appl. , vol.302-303 , pp. 163-172
    • Wang, B.Y.1    Zhang, X.2    Zhang, F.3
  • 10
    • 0014476598 scopus 로고
    • Condition for positive and nonnegative definite in terms of pseudoinverse
    • A. Albert (1969). Condition for positive and nonnegative definite in terms of pseudoinverse. SIAM J. Appl. Math., 17, 434-440.
    • (1969) SIAM J. Appl. Math. , vol.17 , pp. 434-440
    • Albert, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.