-
1
-
-
0038425666
-
Nonnegative definite and positive definite solutions to the matrix equation AXA* = B
-
J.K. Baksalary (1984). Nonnegative definite and positive definite solutions to the matrix equation AXA* = B. Linear and Multilinear Algebra, 16, 133-139.
-
(1984)
Linear and Multilinear Algebra
, vol.16
, pp. 133-139
-
-
Baksalary, J.K.1
-
2
-
-
18144433136
-
Nonnegative-define and positive solutions to the matrix equation AXA* = B- revisited
-
J. Groß (2000). Nonnegative-define and positive solutions to the matrix equation AXA* = B- revisited. Linear Algebra Appl., 321, 123-129.
-
(2000)
Linear Algebra Appl.
, vol.321
, pp. 123-129
-
-
Groß, J.1
-
3
-
-
0038763665
-
Hermitian and nonnegative definite solutions of linear matrix equations
-
C.G. Khatri, and S.K. Mitra (1976). Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math., 31, 579-585.
-
(1976)
SIAM J. Appl. Math.
, vol.31
, pp. 579-585
-
-
Khatri, C.G.1
Mitra, S.K.2
-
4
-
-
0038638353
-
The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B
-
accepted
-
X. Zhang, and M.Y. Cheng (2003). The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation AXA* = B. Linear Algebra Appl. (accepted).
-
(2003)
Linear Algebra Appl.
-
-
Zhang, X.1
Cheng, M.Y.2
-
5
-
-
0037749341
-
Linear matrix equations from an inverse problem of vibration theory
-
H. Dai, and P. Lancaster (1996). Linear matrix equations from an inverse problem of vibration theory. Linear Algebra Appl., 246, 31-47.
-
(1996)
Linear Algebra Appl.
, vol.246
, pp. 31-47
-
-
Dai, H.1
Lancaster, P.2
-
6
-
-
0347884309
-
Hermitian and nonnegative definite solutions of linear matrix equations
-
J. Groß (1998). Hermitian and nonnegative definite solutions of linear matrix equations. Bull. Malay. Math. Soc., 21, 57-62.
-
(1998)
Bull. Malay. Math. Soc.
, vol.21
, pp. 57-62
-
-
Groß, J.1
-
7
-
-
0343621607
-
Independence distribution preserving covariance structures for themultivariate model
-
D.M. Young, J.W. Seaman Jr. and L.M. Meaux (1999). Independence distribution preserving covariance structures for themultivariate model. J. Multivariate Anal., 68, 165-175.
-
(1999)
J. Multivariate Anal.
, vol.68
, pp. 165-175
-
-
Young, D.M.1
Seaman Jr., J.W.2
Meaux, L.M.3
-
8
-
-
0033269615
-
Some inequalities on generalized Schur complements
-
B.Y. Wang, X. Zhang and F. Zhang (1999). Some inequalities on generalized Schur complements. Linear Algebra Appl., 302-303, 163-172.
-
(1999)
Linear Algebra Appl.
, vol.302-303
, pp. 163-172
-
-
Wang, B.Y.1
Zhang, X.2
Zhang, F.3
-
10
-
-
0014476598
-
Condition for positive and nonnegative definite in terms of pseudoinverse
-
A. Albert (1969). Condition for positive and nonnegative definite in terms of pseudoinverse. SIAM J. Appl. Math., 17, 434-440.
-
(1969)
SIAM J. Appl. Math.
, vol.17
, pp. 434-440
-
-
Albert, A.1
|