-
1
-
-
0000517115
-
-
Olah, G. A.; Schleyer, P. v. R., Eds.; Wiley-Interscience: New York, N. Y.
-
(a) For a review, see; Wilberg, K. B.; Hess, J. R.; Ashe III, A. J. Carbonium Ions, Vol. III; Olah, G. A.; Schleyer, P. v. R., Eds.; Wiley-Interscience: New York, N. Y., 1972; p 1295.
-
(1972)
Carbonium Ions
, vol.3
, pp. 1295
-
-
Wilberg, K.B.1
Hess, J.R.2
Ashe III, A.J.3
-
5
-
-
0141472147
-
-
(d) Buss, V.; Gleiter, R.; Schleyer, P. v. R. J. Am. Chem. Soc. 1971, 93, 3927.
-
(1971)
J. Am. Chem. Soc.
, vol.93
, pp. 3927
-
-
Buss, V.1
Gleiter, R.2
Schleyer, P.V.R.3
-
10
-
-
0000722412
-
-
(i) Olah, G. A.; Westerman, P. W.; Nishmura, J. J. Am. Chem. Soc. 1974, 96, 3548.
-
(1974)
J. Am. Chem. Soc.
, vol.96
, pp. 3548
-
-
Olah, G.A.1
Westerman, P.W.2
Nishmura, J.3
-
11
-
-
33748850517
-
-
(j) Olah, G. A.; Jeuell, D. P.; Kelly, D. P.; Porter, A. D. J. Am. Chem. Soc. 1972, 94, 146.
-
(1972)
J. Am. Chem. Soc.
, vol.94
, pp. 146
-
-
Olah, G.A.1
Jeuell, D.P.2
Kelly, D.P.3
Porter, A.D.4
-
13
-
-
1642451059
-
-
(b) Martin, J. C.; Schultz, J. E.; Timberlake, J. W. Tetrahedron Lett. 1967, 32, 4626.
-
(1967)
Tetrahedron Lett.
, vol.32
, pp. 4626
-
-
Martin, J.C.1
Schultz, J.E.2
Timberlake, J.W.3
-
14
-
-
0000482786
-
-
(a) Freeman, P. K.; Wuerch, S. E.; Clapp, G. E. J. Org. Chem. 1990, 55, 2587.
-
(1990)
J. Org. Chem.
, vol.55
, pp. 2587
-
-
Freeman, P.K.1
Wuerch, S.E.2
Clapp, G.E.3
-
18
-
-
33947088922
-
-
(b) Hoffmann, R.; Random, J. A.; Popple, C.; Schleyer, P. v. R.; Hehre, W. J.; Salem L. J. Am. Chem. Soc. 1972, 94, 6221.
-
(1972)
J. Am. Chem. Soc.
, vol.94
, pp. 6221
-
-
Hoffmann, R.1
Random, J.A.2
Popple, C.3
Schleyer, P.V.R.4
Hehre, W.J.5
Salem, L.6
-
19
-
-
0011535862
-
-
Childs, R. F.; Faggiani, R.; Lock, C. J. L.; Mahendran, M.; Zweep, S. D. J. Am. Chem. Soc. 1986, 108, 1692.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 1692
-
-
Childs, R.F.1
Faggiani, R.2
Lock, C.J.L.3
Mahendran, M.4
Zweep, S.D.5
-
20
-
-
0020807051
-
-
We observed the ring-expansion process (from cyclopropyl to cyclobutyl) for cyclopropylcarbenes, which generally occurs from the singlet state. For singlet-state cyclopropylcarbenes, see: (a) Bekhazi, M.; Risbood, P. A.; Warkentin, J. J. Am. Chem. Soc. 1983, 105, 5675.
-
(1983)
J. Am. Chem. Soc.
, vol.105
, pp. 5675
-
-
Bekhazi, M.1
Risbood, P.A.2
Warkentin, J.3
-
22
-
-
1642532835
-
-
(c) Moss, R. A.; Vessa, M.; Guo, W.; Munjal, R. C.; Houk, K. N.; Randan, N. G. J. Am. Chem. Soc. 1979, 101, 6788.
-
(1979)
J. Am. Chem. Soc.
, vol.101
, pp. 6788
-
-
Moss, R.A.1
Vessa, M.2
Guo, W.3
Munjal, R.C.4
Houk, K.N.5
Randan, N.G.6
-
23
-
-
0004050551
-
-
Academic Press: New York
-
nd ed.; Academic Press: New York, 1971; p 467.
-
(1971)
nd Ed.
, pp. 467
-
-
Kimse, W.1
-
25
-
-
0000647718
-
-
(f) Bonneau, R.; Liu, M. T.; Rayez, M. T. J. Am. Chem. Soc. 1989, 111, 5973.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 5973
-
-
Bonneau, R.1
Liu, M.T.2
Rayez, M.T.3
-
26
-
-
0001633396
-
-
(a) Ammann, J. R.; Subramanian, R.; Sheridan, R. S. J. Am. Chem. Soc. 1992, 114, 7592.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 7592
-
-
Ammann, J.R.1
Subramanian, R.2
Sheridan, R.S.3
-
28
-
-
0000395861
-
-
(c) Ho, G.; Krogh-Jespersen, K.; Moss, R. A.; Shen, S.; Sheridan, R. S.; Subramanian, R. J. Am. Chem. Soc. 1989, 111, 6875.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 6875
-
-
Ho, G.1
Krogh-Jespersen, K.2
Moss, R.A.3
Shen, S.4
Sheridan, R.S.5
Subramanian, R.6
-
29
-
-
0004133516
-
-
Gaussian, Inc.: Pittsburgh, PA
-
Ab initio calculations were carried out using the Gaussian 94: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, w.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 94, Revision B.2; Gaussian, Inc.: Pittsburgh, PA, 1995.
-
(1995)
GAUSSIAN 94, Revision B.2
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
30
-
-
0000189651
-
-
The density functional theory calculations used Becke's three-parameter hybrid method (Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652) and the correlation functional of Lee (Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 785-789) within the Gaussian 94 program. The zero-point energies were corrected by a scaling factor of 0.9804 to eliminate known systematic errors in the calculated frequency.
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 5648-5652
-
-
Becke, A.D.1
-
31
-
-
0345491105
-
-
The density functional theory calculations used Becke's three-parameter hybrid method (Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652) and the correlation functional of Lee (Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 785-789) within the Gaussian 94 program. The zero-point energies were corrected by a scaling factor of 0.9804 to eliminate known systematic errors in the calculated frequency.
-
(1988)
Phys. Rev. B
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
32
-
-
1642451054
-
-
note
-
Previous calculation indicated that the W-shape conformation of 3 is 4.0 kcal/mol higher in energy at the MP2/6-31G* level. See ref. 8a.
-
-
-
-
35
-
-
0001633396
-
-
(c) Ammann, J. R.; Subramanian, R.; Sheridan, R. S. J. Am. Chem. Soc. 1992, 114, 7592.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 7592
-
-
Ammann, J.R.1
Subramanian, R.2
Sheridan, R.S.3
-
36
-
-
0001161818
-
-
(d) Liu, J.; Niwayama, S.; You, Y.; Houk, K. N. J. Org. Chem. 1998, 63, 1064.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 1064
-
-
Liu, J.1
Niwayama, S.2
You, Y.3
Houk, K.N.4
-
37
-
-
0000155695
-
-
(e) Halton, B.; Cooney, M. J.; Boese, R.; Maulitz, A. H. J. Org. Chem. 1998, 63, 1583.
-
(1998)
J. Org. Chem.
, vol.63
, pp. 1583
-
-
Halton, B.1
Cooney, M.J.2
Boese, R.3
Maulitz, A.H.4
-
38
-
-
0035540450
-
-
(f) Baik, W.; Kim, S. J.; Hurh, E.; Koo, S.; Kim, B. H. Bull. Korean Chem. Soc. 2001, 22, 1127.
-
(2001)
Bull. Korean Chem. Soc.
, vol.22
, pp. 1127
-
-
Baik, W.1
Kim, S.J.2
Hurh, E.3
Koo, S.4
Kim, B.H.5
-
39
-
-
11644312572
-
-
The optimized geometry for cyclopropylmethylene at HF/3-31G level also shows a bisected conformation. See ref. 8b
-
In the bisected conformation, the vacant carbenic p orbital can favorably interact with the bent cyclopropyl bonds. A bisected conformation of cyclopropylmethylene was proposed by Hoffmann with an LCAO MO calculation of the extended Hückel type. See: Hoffmann, R.; Zeiss, G. D.; Van Dine, G. W. J. Am. Chem. Soc. 1968, 90, 1485. The optimized geometry for cyclopropylmethylene at HF/3-31G level also shows a bisected conformation. See ref. 8b.
-
(1968)
J. Am. Chem. Soc.
, vol.90
, pp. 1485
-
-
Hoffmann, R.1
Zeiss, G.D.2
Van Dine, G.W.3
-
40
-
-
0007661168
-
-
The experimental bond length in cyclopropane is 1.512 Å. The calculated bond angle and bond length for cyclopropane are 60.04° and 1.508 Å at the B3LYP/6-31G(d) + ZPE level. See: Bastiansen, O.; Fritsch, F. N.; Hedberg, K. Acta Crystallogr. 1964, 17, 538.
-
(1964)
Acta Crystallogr.
, vol.17
, pp. 538
-
-
Bastiansen, O.1
Fritsch, F.N.2
Hedberg, K.3
-
41
-
-
1642573608
-
-
note
-
The ideal value for the bond angle at the carbene center in singlet methylene is only 102°. Sterically hindered substituents force a widening of this bond angle. For example, the bond angles for dimethylcarbene and di-tert-butylcarbene at the B3LYP/TZ2P level are 113.5° and 125.1°, respectively. See ref. 16.
-
-
-
-
42
-
-
0029859339
-
-
The experimental Singlet-Triplet (S-T) splitting of methylene is 9.05 ± 0.06 kcal/mol, while at the B3LYP/6-31G* level the S-T for methylene is 13.56 kcal/mol, 4.09 kcal/mol more than the experimental result. Thus, the computed S-T splittings of carbenes 1-3 in Table 5 are corrected by 4.09 kcal/mol to account for the overestimation. This analysis followed the approach used by Sulzbach et al. See: Sulzbach, H. M.; Bolton, E.; Lenoir, D.; Schleyer, P. v. R.; Schaefer III, H. F. J. Am. Chem. Soc. 1996, 118, 9908.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 9908
-
-
Sulzbach, H.M.1
Bolton, E.2
Lenoir, D.3
Schleyer, P.V.R.4
Schaefer III, H.F.5
-
43
-
-
0011682081
-
-
Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
-
(1987)
J. Chem. Phys.
, vol.87
, pp. 5968
-
-
Pople, J.A.1
Head-Gordon, M.2
Raghavachari, K.3
-
44
-
-
0042567666
-
-
Replogle, E. S.; Trucks, G. W.; Staley, S. W. J. Phys. Chem. 1991, 95, 6908.
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 6908
-
-
Replogle, E.S.1
Trucks, G.W.2
Staley, S.W.3
|