-
1
-
-
0024250724
-
Fourth-order finite-difference P-SV seismograms
-
Levander A.R.Fourth-order finite-difference P-SV seismograms Geophysics 53 1988 1425-1436
-
(1988)
Geophysics
, vol.53
, pp. 1425-1436
-
-
Levander, A.R.1
-
3
-
-
0032030043
-
3-D finite difference elastic wave modeling including surface topography
-
Hestholm S.Ruud B.3-D finite difference elastic wave modeling including surface topography Geophysics 63 1998 613-622
-
(1998)
Geophysics
, vol.63
, pp. 613-622
-
-
Hestholm, S.1
Ruud, B.2
-
4
-
-
0028450304
-
High-order finite elements with mass lumping for the 1D wave equation
-
Cohen G.Joly P.Tordjman N.High-order finite elements with mass lumping for the 1D wave equation Finite Elements Anal. Des. 16 1994 469-476
-
(1994)
Finite Elements Anal. Des.
, vol.16
, pp. 469-476
-
-
Cohen, G.1
Joly, P.2
Tordjman, N.3
-
5
-
-
0033164986
-
Spurious modes in finite-element discretizations of the wave equation may not be all that bad
-
Mulder W.A.Spurious modes in finite-element discretizations of the wave equation may not be all that bad Appl. Numer. Math. 25 1997 425-445
-
(1997)
Appl. Numer. Math.
, vol.25
, pp. 425-445
-
-
Mulder, W.A.1
-
6
-
-
0023525582
-
The pseudospectral method: Comparisons with finite differences for the elastic wave equation
-
Fornberg B.The pseudospectral method: Comparisons with finite differences for the elastic wave equation Geophysics 52 1987 483-501
-
(1987)
Geophysics
, vol.52
, pp. 483-501
-
-
Fornberg, B.1
-
8
-
-
0000092890
-
Multi-domain Chebyshev-Fourier method for the solution of the equations of motion of dynamic elasticity
-
Tessmer E.Kessler D.Kosloff D.Behle A.Multi-domain Chebyshev-Fourier method for the solution of the equations of motion of dynamic elasticity J. Comput. Physics 100 1992 355-363
-
(1992)
J. Comput. Physics
, vol.100
, pp. 355-363
-
-
Tessmer, E.1
Kessler, D.2
Kosloff, D.3
Behle, A.4
-
9
-
-
0009404816
-
Analysis of higher order finite-element methods
-
K.R. Kelly, K.J. Marfurt (Eds.), Society of Exploration Geophysicists
-
K.J. Marfurt, Analysis of higher order finite-element methods, in: K.R. Kelly, K.J. Marfurt (Eds.), Numerical Modeling of Seismic Wave Propagation, Society of Exploration Geophysicists, 1990, pp. 516-520.
-
(1990)
Numerical Modeling of Seismic Wave Propagation
, pp. 516-520
-
-
Marfurt, K.J.1
-
10
-
-
48549109395
-
A spectral element method for fluid dynamics: Laminar flow in a channel expansion
-
Patera A.T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion J. Comput. Phys. 84 1984 468-488
-
(1984)
J. Comput. Phys.
, vol.84
, pp. 468-488
-
-
Patera, A.T.1
-
12
-
-
0021644645
-
Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations
-
Marfurt K.J.Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations Geophysics 49 1984 533-549
-
(1984)
Geophysics
, vol.49
, pp. 533-549
-
-
Marfurt, K.J.1
-
13
-
-
0000113292
-
Low- and high-order finite element method: Experience in seismic modeling
-
Padovani E.Priolo E.Seriani G.Low- and high-order finite element method: Experience in seismic modeling J. Comput. Acoust. 24 1994 371-422
-
(1994)
J. Comput. Acoust.
, vol.24
, pp. 371-422
-
-
Padovani, E.1
Priolo, E.2
Seriani, G.3
-
14
-
-
0028123819
-
Numerical simulation of interface waves by high-order spectral modeling techniques
-
Priolo E.Carcione J.M.Seriani G.Numerical simulation of interface waves by high-order spectral modeling techniques J. Acoust. Soc. Am. 951 1994 681-693
-
(1994)
J. Acoust. Soc. Am.
, vol.951
, pp. 681-693
-
-
Priolo, E.1
Carcione, J.M.2
Seriani, G.3
-
15
-
-
0028450299
-
Spectral element method for acoustic wave simulation in heterogeneous media
-
Seriani G.Priolo E.Spectral element method for acoustic wave simulation in heterogeneous media Finite Elements Anal. Des. 16 1994 337-348
-
(1994)
Finite Elements Anal. Des.
, vol.16
, pp. 337-348
-
-
Seriani, G.1
Priolo, E.2
-
16
-
-
0031815577
-
The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures
-
Komatitsch D.Vilotte J.-P.The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures Bull. Seis. Soc. Am. 88 1998 368-392
-
(1998)
Bull. Seis. Soc. Am.
, vol.88
, pp. 368-392
-
-
Komatitsch, D.1
Vilotte, J.-P.2
-
17
-
-
0000497154
-
A numerical investigation of Chebyshev spectral element method for acoustic wave propagation
-
Criterion Press, Dublin
-
E. Priolo, G. Seriani, A numerical investigation of Chebyshev spectral element method for acoustic wave propagation, in: Proceedings of the 13th IMACS World Congress on Computational and Applied Mathematics, vol. 2, Criterion Press, Dublin, 1991, pp. 551-556.
-
(1991)
Proceedings of the 13th IMACS World Congress on Computational and Applied Mathematics
, vol.2
, pp. 551-556
-
-
Priolo, E.1
Seriani, G.2
-
18
-
-
0033587634
-
An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation
-
Dauksher W.Emery A.F.An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation Int. J. Numer. Meth. Eng. 45 1999 1099-1113
-
(1999)
Int. J. Numer. Meth. Eng.
, vol.45
, pp. 1099-1113
-
-
Dauksher, W.1
Emery, A.F.2
-
19
-
-
0029405472
-
Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods Comput
-
Hughes T.J.R.Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods Comput. Meth. Appl. Mech. Eng. 127 1995 F387-401
-
(1995)
Comput. Meth. Appl. Mech. Eng.
, vol.127
, pp. 387-401
-
-
Hughes, T.J.R.1
-
20
-
-
0030380578
-
The partition of unity finite element method: Basic theory and applications
-
Melenk J.M.Babuska I.The partition of unity finite element method: basic theory and applications Comput. Meth. Appl. Mech. Eng. 139 1996 289-314
-
(1996)
Comput. Meth. Appl. Mech. Eng.
, vol.139
, pp. 289-314
-
-
Melenk, J.M.1
Babuska, I.2
-
22
-
-
0032637241
-
A least-squares method for the Helmholtz equation
-
Monk P.Wang D.-Q.A least-squares method for the Helmholtz equation Comput. Meth. Appl. Mech. Eng. 175 1999 121-136
-
(1999)
Comput. Meth. Appl. Mech. Eng.
, vol.175
, pp. 121-136
-
-
Monk, P.1
Wang, D.-Q.2
-
26
-
-
0039646945
-
A parallel spectral element method for acoustic wave modeling
-
Seriani G.A parallel spectral element method for acoustic wave modeling J. Comput. Acoust. 51 1997 53-69
-
(1997)
J. Comput. Acoust.
, vol.51
, pp. 53-69
-
-
Seriani, G.1
-
27
-
-
0032476189
-
3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor
-
Seriani G.3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor Comput. Meth. Appl. Mech. Eng. 1641-2 1998 235-247
-
(1998)
Comput. Meth. Appl. Mech. Eng.
, vol.1641-1642
, pp. 235-247
-
-
Seriani, G.1
-
28
-
-
0031161210
-
A multiscale finite element method for elliptic problems in composite materials and porous media
-
Hou T.Y.Wu X.-H.A multiscale finite element method for elliptic problems in composite materials and porous media J. Comput. Phys. 134 1997 169-189
-
(1997)
J. Comput. Phys.
, vol.134
, pp. 169-189
-
-
Hou, T.Y.1
Wu, X.-H.2
-
29
-
-
0000402847
-
A nonreflecting boundary condition for discrete acoustic and elastic wave equations
-
Cerjan C.Kosloff D.Kosloff R.Reshef M.A nonreflecting boundary condition for discrete acoustic and elastic wave equations Geophysics 50 1985 705-708
-
(1985)
Geophysics
, vol.50
, pp. 705-708
-
-
Cerjan, C.1
Kosloff, D.2
Kosloff, R.3
Reshef, M.4
-
30
-
-
0039624649
-
Transient response analysis
-
H. Kardestuncer, D.H. Norrie (Eds.), McGraw-Hill, New York
-
O.C. Zienkiewicz, W.L. Wood, Transient response analysis, in: H. Kardestuncer, D.H. Norrie (Eds.), Finite Element Handbook, McGraw-Hill, New York, 1987, pp. 2.275-2.314.
-
(1987)
Finite Element Handbook
-
-
Zienkiewicz, O.C.1
Wood, W.L.2
-
31
-
-
0034345544
-
An iterative time-stepping method for solving first order time dependent problems and its application to the wave equation
-
Seriani G.An iterative time-stepping method for solving first order time dependent problems and its application to the wave equation J. Comput. Acoust. 81 2000 241-255
-
(2000)
J. Comput. Acoust.
, vol.81
, pp. 241-255
-
-
Seriani, G.1
|