메뉴 건너뛰기




Volumn 198, Issue 2, 2004, Pages 275-300

An elliptic problem with critical growth in domains with shrinking holes

Author keywords

Critical exponent; Elliptic equation; Reduction method

Indexed keywords


EID: 1642369154     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jde.2003.06.001     Document Type: Article
Times cited : (23)

References (17)
  • 1
    • 0003246964 scopus 로고
    • Critical points at infinity in some variational problems
    • Longman, Pitman, New York
    • A. Bahri, Critical points at infinity in some variational problems, in: Research Notes in Mathematics, Vol. 182, Longman, Pitman, New York, 1989.
    • (1989) Research Notes in Mathematics , vol.182
    • Bahri, A.1
  • 2
    • 84990623267 scopus 로고
    • On a nonlinear elliptic equation involving the critical Sobolev exponent. The effect of the topology of the domain
    • A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent. The effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988) 253-294.
    • (1988) Comm. Pure Appl. Math. , vol.41 , pp. 253-294
    • Bahri, A.1    Coron, J.M.2
  • 3
    • 0003007474 scopus 로고
    • On a variational problem with lack of compactness: The topological effect of the critical point at infinity
    • A. Bahri, Y.Y. Li, O. Rey, On a variational problem with lack of compactness: The topological effect of the critical point at infinity, Calc. Var. Partial Differential Equations 3 (1995) 67-93.
    • (1995) Calc. Var. Partial Differential Equations , vol.3 , pp. 67-93
    • Bahri, A.1    Li, Y.Y.2    Rey, O.3
  • 4
    • 0009345579 scopus 로고
    • Nonlinear elliptic problem with critical exponent in shrinking annuli
    • C. Bandle, L.A. Peletier, Nonlinear elliptic problem with critical exponent in shrinking annuli, Math. Ann. 280 (1988) 1-19.
    • (1988) Math. Ann. , vol.280 , pp. 1-19
    • Bandle, C.1    Peletier, L.A.2
  • 5
    • 0002556198 scopus 로고
    • The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems
    • V. Benci, G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch, Rat. Mech. Anal. 114 (1991) 79-93.
    • (1991) Arch, Rat. Mech. Anal. , vol.114 , pp. 79-93
    • Benci, V.1    Cerami, G.2
  • 6
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
    • H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983) 437-477.
    • (1983) Comm. Pure Appl. Math. , vol.36 , pp. 437-477
    • Brezis, H.1    Nirenberg, L.2
  • 7
    • 0000206097 scopus 로고
    • Topologie et cas limite des injections de Sobolev
    • J.M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris 299 (1984) 209-212.
    • (1984) C. R. Acad. Sci. Paris , vol.299 , pp. 209-212
    • Coron, J.M.1
  • 8
    • 0036647451 scopus 로고    scopus 로고
    • Multipeak solutions for super-critical elliptic problems in domain with small holes
    • M. Del Pino, P. Felmer, M. Musso, Multipeak solutions for super-critical elliptic problems in domain with small holes, J. Differential Equations 182 (2002) 511-540.
    • (2002) J. Differential Equations , vol.182 , pp. 511-540
    • Del Pino, M.1    Felmer, P.2    Musso, M.3
  • 10
    • 0002882870 scopus 로고
    • Nonlinear elliptic Dirichlet problems in exterior domains, the role of geometry and topology of the domain
    • M. Grossi, D. Passaseo, Nonlinear elliptic Dirichlet problems in exterior domains, the role of geometry and topology of the domain, Comm. Appl. Nonlinear Anal. 2 (1995) 1-31.
    • (1995) Comm. Appl. Nonlinear Anal. , vol.2 , pp. 1-31
    • Grossi, M.1    Passaseo, D.2
  • 12
    • 0001294182 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The limit case. I
    • P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985) 145-201.
    • (1985) Rev. Mat. Iberoamericana , vol.1 , pp. 145-201
    • Lions, P.L.1
  • 13
    • 0000514956 scopus 로고
    • Eigenfunctions of the equation Δu + λf (u) = 0
    • S. Pohozaev, Eigenfunctions of the equation Δu + λf (u) = 0, Soviet Math. Dokl. 6 (1965) 1408-1411.
    • (1965) Soviet Math. Dokl. , vol.6 , pp. 1408-1411
    • Pohozaev, S.1
  • 14
    • 38249005996 scopus 로고
    • Multiplicity result for a variational problem with lack of compactness
    • O. Rey, Multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. TMA 13 (1989) 1241-1249.
    • (1989) Nonlinear Anal. TMA , vol.13 , pp. 1241-1249
    • Rey, O.1
  • 15
    • 0002944738 scopus 로고
    • The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent
    • O. Rey, The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52.
    • (1990) J. Funct. Anal. , vol.89 , pp. 1-52
    • Rey, O.1
  • 16
    • 0002859929 scopus 로고    scopus 로고
    • The topological impact of critical points at infinity in a variational problem with lack of compactness: The dimension 3
    • O. Rey, The topological impact of critical points at infinity in a variational problem with lack of compactness: The dimension 3, Adv. Differential Equations 4 (1999) 581-616.
    • (1999) Adv. Differential Equations , vol.4 , pp. 581-616
    • Rey, O.1
  • 17
    • 0000220970 scopus 로고
    • A global compactness result for elliptic boundary value problems involving limiting nonlinearities
    • M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984) 247-274.
    • (1984) Math. Z. , vol.187 , pp. 247-274
    • Struwe, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.