-
3
-
-
1642299005
-
Extracting macroscopic dynamics: Model problems and algorithms
-
submitted for publication
-
D. Givon, R. Kupferman, A. Stuart, Extracting macroscopic dynamics: model problems and algorithms, Nonlinearity, 2003, submitted for publication.
-
(2003)
Nonlinearity
-
-
Givon, D.1
Kupferman, R.2
Stuart, A.3
-
4
-
-
0002546882
-
A limit theorem for perturbed operator semigroups with applications to random evolutions
-
Kurtz T. A limit theorem for perturbed operator semigroups with applications to random evolutions. J. Funct. Anal. 12:1973;55-67.
-
(1973)
J. Funct. Anal.
, vol.12
, pp. 55-67
-
-
Kurtz, T.1
-
5
-
-
84980152442
-
Asymptotic theory of mixing stochastic ordinary differential equations
-
Papanicolaou G., Kohler W. Asymptotic theory of mixing stochastic ordinary differential equations. Comm. Pure Appl. Math. XXVII:1974;641-668.
-
(1974)
Comm. Pure Appl. Math.
, vol.27
, pp. 641-668
-
-
Papanicolaou, G.1
Kohler, W.2
-
6
-
-
0009996169
-
Some probabilistic problems and methods in singular perturbations
-
Papanicolaou G. Some probabilistic problems and methods in singular perturbations. Rocky Mountain J. Math. 6:1976;653-673.
-
(1976)
Rocky Mountain J. Math.
, vol.6
, pp. 653-673
-
-
Papanicolaou, G.1
-
8
-
-
0001926804
-
From dynamical systems to the Langevin equation
-
Beck C., Roepstorff G. From dynamical systems to the Langevin equation. Physica A. 145:1987;1-14.
-
(1987)
Physica A
, vol.145
, pp. 1-14
-
-
Beck, C.1
Roepstorff, G.2
-
9
-
-
0001007175
-
Brownian motion from deterministic dynamics
-
Beck C. Brownian motion from deterministic dynamics. Physica A. 169:1990;324-336.
-
(1990)
Physica A
, vol.169
, pp. 324-336
-
-
Beck, C.1
-
11
-
-
36149005118
-
On the theory of Brownian motion
-
Uhlenbeck G., Ornstein L. On the theory of Brownian motion. Phys. Rev. 36:1930;823-841.
-
(1930)
Phys. Rev.
, vol.36
, pp. 823-841
-
-
Uhlenbeck, G.1
Ornstein, L.2
-
13
-
-
25044451005
-
Ito versus Stratonovich white noise limits for systems with inertia and colored multiplicative noise
-
R. Kupferman, G. Pavliotis, A. Stuart, Ito versus Stratonovich white noise limits for systems with inertia and colored multiplicative noise, 2003, submitted to Phys. Rev. E.
-
(2003)
Phys. Rev. E.
-
-
Kupferman, R.1
Pavliotis, G.2
Stuart, A.3
-
14
-
-
0000728548
-
Stabilization by multiplicative noise
-
Graham R., Schenzle A. Stabilization by multiplicative noise. Phys. Rev. A. 26:1982;1676-1685.
-
(1982)
Phys. Rev. A
, vol.26
, pp. 1676-1685
-
-
Graham, R.1
Schenzle, A.2
-
15
-
-
0003655416
-
-
New York: The Macmillan Company
-
Royden H. Real Analysis. 1963;The Macmillan Company, New York.
-
(1963)
Real Analysis
-
-
Royden, H.1
-
16
-
-
0002977054
-
Riemann-Stieltjes approximations of stochastic integrals
-
Wong E., Zakai M. Riemann-Stieltjes approximations of stochastic integrals. Z. Wahr. Verb. Geb. 120:1969;87-97.
-
(1969)
Z. Wahr. Verb. Geb.
, vol.120
, pp. 87-97
-
-
Wong, E.1
Zakai, M.2
-
18
-
-
0001760963
-
The Euler scheme for stochastic differential equations: Error analysis with Malliavin calculus
-
Bally V., Talay D. The Euler scheme for stochastic differential equations. error analysis with Malliavin calculus Math. Comput. Simulation. 38:1995;35-41.
-
(1995)
Math. Comput. Simulation
, vol.38
, pp. 35-41
-
-
Bally, V.1
Talay, D.2
-
19
-
-
0000575447
-
On the convergence of ordinary integrals to stochastic integrals
-
Wong E., Zakai M. On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36:1965;1560-1564.
-
(1965)
Ann. Math. Statist.
, vol.36
, pp. 1560-1564
-
-
Wong, E.1
Zakai, M.2
-
20
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
Hoeffding W. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58:1963;13-30.
-
(1963)
J. Amer. Statist. Assoc.
, vol.58
, pp. 13-30
-
-
Hoeffding, W.1
-
21
-
-
84972574511
-
Weighted sums of certain dependent random variables
-
Azuma K. Weighted sums of certain dependent random variables. Tohoku Math. J. 19:1967;357-367.
-
(1967)
Tohoku Math. J.
, vol.19
, pp. 357-367
-
-
Azuma, K.1
|