메뉴 건너뛰기




Volumn 18, Issue 5, 2004, Pages 691-705

Numerical solution of the controlled duffing oscillator by the interpolating scaling functions

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; BOUNDARY CONDITIONS; CHAOS THEORY; CHEBYSHEV APPROXIMATION; COMPUTATIONAL METHODS; FREQUENCIES; INTERPOLATION; MATRIX ALGEBRA; NUMERICAL METHODS; OPTIMAL CONTROL SYSTEMS; PROBLEM SOLVING;

EID: 1642335254     PISSN: 09205071     EISSN: 15693937     Source Type: Journal    
DOI: 10.1163/156939304774114718     Document Type: Article
Times cited : (21)

References (15)
  • 2
    • 0036157323 scopus 로고    scopus 로고
    • Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator
    • Wang, G., W. Zhenga, and S. He, “Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator,” Signal Processing, Vol. 82, 103-115, 2002.
    • (2002) Signal Processing , vol.82 , pp. 103-115
    • Wang, G.1    Zhenga, W.2    He, S.3
  • 3
    • 0034164520 scopus 로고    scopus 로고
    • Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium
    • Maimistov, A. I., “Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium,” Quantum Electron, Vol. 30, 287-304, 2000.
    • (2000) Quantum Electron , vol.30 , pp. 287-304
    • Maimistov, A.I.1
  • 4
    • 0041703038 scopus 로고    scopus 로고
    • Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order Duffing model
    • Maimistov, A. I., “Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order Duffing model,” Optics and Spectroscopy, Vol. 94, 251-257, 2003.
    • (2003) Optics and Spectroscopy , vol.94 , pp. 251-257
    • Maimistov, A.I.1
  • 5
    • 0001766354 scopus 로고
    • Duffing equation in brain modelling
    • Zeeman, E., “Duffing equation in brain modelling,” Bull. IMA, Vol. 12, 207-214, 1976.
    • (1976) Bull. IMA , vol.12 , pp. 207-214
    • Zeeman, E.1
  • 6
    • 0037451031 scopus 로고    scopus 로고
    • Observer-based exact synchronization of ideal and mismatched chaotic systems
    • Feki, M., “Observer-based exact synchronization of ideal and mismatched chaotic systems,” Physics Letters A, Vol. 309, 53-60, 2003.
    • (2003) Physics Letters A , vol.309 , pp. 53-60
    • Feki, M.1
  • 7
    • 0004828206 scopus 로고    scopus 로고
    • Dissipative control of chaos in non-linear vibrating systems
    • Ravindra, B. and A. K. Mallik, “Dissipative control of chaos in non-linear vibrating systems,” J. Sound Vibration, Vol. 211, 709-715, 1998.
    • (1998) J. Sound Vibration , vol.211
    • Ravindra, B.1    Mallik, A.K.2
  • 10
    • 0000822978 scopus 로고
    • Chebyshev series solution of the controlled Duffing oscillator
    • Vlassenbroeck, J. and R. Van Dooren, “Chebyshev series solution of the controlled Duffing oscillator,” J. Comput. Phys., Vol. 47, 321-329, 1982.
    • (1982) J. Comput. Phys. , vol.47 , pp. 321-329
    • Vlassenbroeck, J.1    Van Dooren, R.2
  • 12
    • 0037054967 scopus 로고    scopus 로고
    • A Chebyshev expansion method for solving nonlinear optimal control problems
    • El-kady, M. and E. M. E. Elbarbary, “A Chebyshev expansion method for solving nonlinear optimal control problems,” Applied Mathematics and Computation, Vol. 129, 171-182, 2002.
    • (2002) Applied Mathematics and Computation , vol.129 , pp. 171-182
    • El-Kady, M.1    Elbarbary, E.M.E.2
  • 13
    • 0000139676 scopus 로고
    • A class of bases in L2 for the sparse representation of integral operators
    • Alpert, B., “A class of bases in L2 for the sparse representation of integral operators,” SIAM J. Math. Anal., Vol. 24, No. 1, 159-184, 1993.
    • (1993) SIAM J. Math. Anal , vol.24 , Issue.1 , pp. 159-184
    • Alpert, B.1
  • 14
    • 0037058028 scopus 로고    scopus 로고
    • Adaptive solution of partial differential equations in multiwavelet bases
    • Alpert, B., G. Beylkin, D. Gines, and L. Vozovoi, “Adaptive solution of partial differential equations in multiwavelet bases,” J. Comput. Phys., Vol. 182, 149-190, 2002.
    • (2002) J. Comput. Phys. , vol.182 , pp. 149-190
    • Alpert, B.1    Beylkin, G.2    Gines, D.3    Vozovoi, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.