-
4
-
-
0000355944
-
-
Paisner, S. N.; Burger, P.; Bergman, R. G. Organometallics 2000, 19, 2073.
-
(2000)
Organometallics
, vol.19
, pp. 2073
-
-
Paisner, S.N.1
Burger, P.2
Bergman, R.G.3
-
5
-
-
0003487210
-
-
University Science Books: Mill Valley, California; Chapter 12
-
Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, California, 1987; Chapter 12.
-
(1987)
Principles and Applications of Organotransition Metal Chemistry
-
-
Collman, J.P.1
Hegedus, L.S.2
Norton, J.R.3
Finke, R.G.4
-
6
-
-
1542724749
-
-
2, see Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1973, 59, 411. Group 12 bisperfluoroalkyl complexes of Zn, Cd, and Hg have also been used as a source of perfluoroalkyl anions (Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1985, 107, 5014 and Eujen, R.; Hoge, B. J. Organomet. Chem. 1995, 503, C51).
-
(1973)
J. Organomet. Chem.
, vol.59
, pp. 411
-
-
Clark, H.C.1
Manzer, L.E.2
-
7
-
-
0000813904
-
-
2, see Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1973, 59, 411. Group 12 bisperfluoroalkyl complexes of Zn, Cd, and Hg have also been used as a source of perfluoroalkyl anions (Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1985, 107, 5014 and Eujen, R.; Hoge, B. J. Organomet. Chem. 1995, 503, C51).
-
(1985)
J. Am. Chem. Soc.
, vol.107
, pp. 5014
-
-
Burton, D.J.1
Wiemers, D.M.2
-
8
-
-
0001910505
-
-
2, see Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1973, 59, 411. Group 12 bisperfluoroalkyl complexes of Zn, Cd, and Hg have also been used as a source of perfluoroalkyl anions (Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1985, 107, 5014 and Eujen, R.; Hoge, B. J. Organomet. Chem. 1995, 503, C51).
-
(1995)
J. Organomet. Chem.
, vol.503
-
-
Eujen, R.1
Hoge, B.2
-
9
-
-
0000639546
-
-
3F7](H) was also briefly mentioned. See Peterson, T. H.; Golden, J. T.; Bergman, R. G. Organometallics 1999, 18, 2005.
-
(1999)
Organometallics
, vol.18
, pp. 2005
-
-
Peterson, T.H.1
Golden, J.T.2
Bergman, R.G.3
-
10
-
-
0034826224
-
-
A fluoroalkyl carbanion/metal cation pair has been reported in W and Mo chemistry. See Hughes, R. P.; Maddock, S. M.; Guzei, I. A.; Liable-Sands, L. M. ; Rheingold, A. L. J. Am. Chem. Soc. 2001, 123, 3279.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 3279
-
-
Hughes, R.P.1
Maddock, S.M.2
Guzei, I.A.3
Liable-Sands, L.M.4
Rheingold, A.L.5
-
11
-
-
1642311617
-
-
note
-
3 did not affect the observed rate of reaction.
-
-
-
-
12
-
-
0000854947
-
-
No aldehyde elimination was ever observed. Classical reductive elimination reactions of Ir(III) alkyl or aryl hydride compounds typically require much higher reaction temperatures. See Buchanan, J. M.; Stryker, J. M.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 1537.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 1537
-
-
Buchanan, J.M.1
Stryker, J.M.2
Bergman, R.G.3
-
13
-
-
1642264543
-
-
note
-
See Supporting Information for details.
-
-
-
-
14
-
-
1642402540
-
-
note
-
For related experiments, see ref 8 and references therein.
-
-
-
-
16
-
-
1642290440
-
-
note
-
See Supporting Information for details on the formation of 15.
-
-
-
-
17
-
-
1642345766
-
-
note
-
Energies are reported relative to 1 and include zero-point vibrational energies (ZPE) and Gibbs free energy corrections at 298.15 K and 1 atm in the gas phase. See the Supporting Information and Figure S-2 for computational details.
-
-
-
-
18
-
-
1642386458
-
-
note
-
Although the gas-phase calculated energy of TS-1 is high, it is a reasonable activation energy for a heterolytic bond-breaking process in the absence of solvent. Preliminary solvent-inclusive DFT calculations indicate that TS-1 is significantly lowered in energy relative to TS-2 or TS-3.
-
-
-
-
19
-
-
0003915529
-
-
Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin
-
NBO, 5.0; Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, 2001.
-
(2001)
NBO, 5.0
-
-
|