메뉴 건너뛰기




Volumn 13, Issue 3, 2004, Pages 124-148

The 2-matrix of the spin-polarized electron gas: Contraction sum rules and spectral resolutions

Author keywords

Cumulant expansion; Density matrices; Geminals; Spin polarized electron gas; Sum rules

Indexed keywords

APPROXIMATION THEORY; CARRIER CONCENTRATION; EIGENVALUES AND EIGENFUNCTIONS; FOURIER TRANSFORM INFRARED SPECTROSCOPY; FUNCTIONS; LIGHT POLARIZATION; MATRIX ALGEBRA; PARAMETER ESTIMATION; SHRINKAGE; SPECTRUM ANALYSIS;

EID: 1642296105     PISSN: 00033804     EISSN: None     Source Type: Journal    
DOI: 10.1002/andp.200310068     Document Type: Article
Times cited : (6)

References (78)
  • 1
    • 0019711815 scopus 로고
    • edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York)
    • K. S. Singwi and M. P. Tosi, in: Solid State Physics, Vol. 36, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1981), p. 177. P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995). N. H. March, Electron Correlation in Molecules and Condensed Phases (Plenum, New York, 1996). N. H. March (ed.), Electron Correlation in the Solid State (Imperial College Press, London, 1999). W. Kutzelnigg, Theory of electron correlation, in: Explicitly Correlated Wave Functions in Chemistry and Physics. Theory and Applications, edited by J. Rychlewski (Kluwer, Dordrecht, 2003), p. 3.
    • (1981) Solid State Physics , vol.36 , pp. 177
    • Singwi, K.S.1    Tosi, M.P.2
  • 2
    • 0004116685 scopus 로고
    • Springer, Berlin
    • K. S. Singwi and M. P. Tosi, in: Solid State Physics, Vol. 36, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1981), p. 177. P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995). N. H. March, Electron Correlation in Molecules and Condensed Phases (Plenum, New York, 1996). N. H. March (ed.), Electron Correlation in the Solid State (Imperial College Press, London, 1999). W. Kutzelnigg, Theory of electron correlation, in: Explicitly Correlated Wave Functions in Chemistry and Physics. Theory and Applications, edited by J. Rychlewski (Kluwer, Dordrecht, 2003), p. 3.
    • (1995) Electron Correlation in Molecules and Solids, 3rd Ed.
    • Fulde, P.1
  • 3
    • 0003729316 scopus 로고    scopus 로고
    • Plenum, New York
    • K. S. Singwi and M. P. Tosi, in: Solid State Physics, Vol. 36, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1981), p. 177. P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995). N. H. March, Electron Correlation in Molecules and Condensed Phases (Plenum, New York, 1996). N. H. March (ed.), Electron Correlation in the Solid State (Imperial College Press, London, 1999). W. Kutzelnigg, Theory of electron correlation, in: Explicitly Correlated Wave Functions in Chemistry and Physics. Theory and Applications, edited by J. Rychlewski (Kluwer, Dordrecht, 2003), p. 3.
    • (1996) Electron Correlation in Molecules and Condensed Phases
    • March, N.H.1
  • 4
    • 0003927244 scopus 로고    scopus 로고
    • Imperial College Press, London
    • K. S. Singwi and M. P. Tosi, in: Solid State Physics, Vol. 36, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1981), p. 177. P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995). N. H. March, Electron Correlation in Molecules and Condensed Phases (Plenum, New York, 1996). N. H. March (ed.), Electron Correlation in the Solid State (Imperial College Press, London, 1999). W. Kutzelnigg, Theory of electron correlation, in: Explicitly Correlated Wave Functions in Chemistry and Physics. Theory and Applications, edited by J. Rychlewski (Kluwer, Dordrecht, 2003), p. 3.
    • (1999) Electron Correlation in the Solid State
    • March, N.H.1
  • 5
    • 2442453341 scopus 로고    scopus 로고
    • Theory of electron correlation
    • dited by J. Rychlewski (Kluwer, Dordrecht)
    • K. S. Singwi and M. P. Tosi, in: Solid State Physics, Vol. 36, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1981), p. 177. P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995). N. H. March, Electron Correlation in Molecules and Condensed Phases (Plenum, New York, 1996). N. H. March (ed.), Electron Correlation in the Solid State (Imperial College Press, London, 1999). W. Kutzelnigg, Theory of electron correlation, in: Explicitly Correlated Wave Functions in Chemistry and Physics. Theory and Applications, edited by J. Rychlewski (Kluwer, Dordrecht, 2003), p. 3.
    • (2003) Explicitly Correlated Wave Functions in Chemistry and Physics. Theory and Applications , pp. 3
    • Kutzelnigg, W.1
  • 8
    • 33744582710 scopus 로고
    • D. M. Ceperley, Phys. Rev. B 18, 3126 (1978). D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
    • (1978) Phys. Rev. B , vol.18 , pp. 3126
    • Ceperley, D.M.1
  • 11
    • 85035319745 scopus 로고    scopus 로고
    • J. P. Perdew and Y. Wang, Phys. Rev. B 46, 12947 (1992); 56, 7018 (1997).
    • (1997) Phys. Rev. B , vol.56 , pp. 7018
  • 12
    • 0000693277 scopus 로고
    • G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994). 56, 9970 (1997). G. Ortiz, M. Harris, and P. Ballone, Phys. Rev. Lett. 82, 5317 (1999).
    • (1994) Phys. Rev. B , vol.50 , pp. 1391
    • Ortiz, G.1    Ballone, P.2
  • 13
    • 33744664168 scopus 로고    scopus 로고
    • G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994). 56, 9970 (1997). G. Ortiz, M. Harris, and P. Ballone, Phys. Rev. Lett. 82, 5317 (1999).
    • (1997) Phys. Rev. B , vol.56 , pp. 9970
  • 16
    • 9744279225 scopus 로고    scopus 로고
    • P. Gori-Giorgi, F. Sacchetti, and G. B. Bachelet, Phys. Rev. B 61, 7353 (2000). 66, 159901(E) (2002).
    • (2002) Phys. Rev. B , vol.66
  • 18
    • 0036678712 scopus 로고    scopus 로고
    • P. Ziesche, phys. stat. sol. (b) 232, 231 (2002). P. Gori-Giorgi and P. Ziesche, Phys. Rev. B 66, 235116 (2002).
    • (2002) Phys. Stat. Sol. (b) , vol.232 , pp. 231
    • Ziesche, P.1
  • 19
  • 25
    • 0036702015 scopus 로고    scopus 로고
    • A. J. Coleman and V. I. Yukalov, Reduced Density Matrices. Coulson's Challenge (Springer, Berlin, 2000). A. J. Coleman, Phys. Rev. A 66, 022503 (2002). A. Beste, K. Runge, and R. Bartlett, Chem. Phys. Lett. 355, 263 (2002).
    • (2002) Phys. Rev. A , vol.66 , pp. 022503
    • Coleman, A.J.1
  • 26
    • 0011169664 scopus 로고    scopus 로고
    • A. J. Coleman and V. I. Yukalov, Reduced Density Matrices. Coulson's Challenge (Springer, Berlin, 2000). A. J. Coleman, Phys. Rev. A 66, 022503 (2002). A. Beste, K. Runge, and R. Bartlett, Chem. Phys. Lett. 355, 263 (2002).
    • (2002) Chem. Phys. Lett. , vol.355 , pp. 263
    • Beste, A.1    Runge, K.2    Bartlett, R.3
  • 31
    • 0035887124 scopus 로고    scopus 로고
    • P. Gori-Giorgi and J. P. Perdew, Phys. Rev. B 64, 155102 (2001). P. Gori-Giorgi, in: Electron Correlations and Materials Properties 2, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 2002), p. 379. M. Corona, P. Gori-Giorgi, and J. P. Perdew, cond-mat/0307389 and Phys. Rev. B, 15 January 2004.
    • (2001) Phys. Rev. B , vol.64 , pp. 155102
    • Gori-Giorgi, P.1    Perdew, J.P.2
  • 32
    • 0035887124 scopus 로고    scopus 로고
    • edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York)
    • P. Gori-Giorgi and J. P. Perdew, Phys. Rev. B 64, 155102 (2001). P. Gori-Giorgi, in: Electron Correlations and Materials Properties 2, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 2002), p. 379. M. Corona, P. Gori-Giorgi, and J. P. Perdew, cond-mat/0307389 and Phys. Rev. B, 15 January 2004.
    • (2002) Electron Correlations and Materials Properties , vol.2 , pp. 379
    • Gori-Giorgi, P.1
  • 33
    • 0035887124 scopus 로고    scopus 로고
    • cond-mat/0307389, 15 January
    • P. Gori-Giorgi and J. P. Perdew, Phys. Rev. B 64, 155102 (2001). P. Gori-Giorgi, in: Electron Correlations and Materials Properties 2, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 2002), p. 379. M. Corona, P. Gori-Giorgi, and J. P. Perdew, cond-mat/0307389 and Phys. Rev. B, 15 January 2004.
    • (2004) Phys. Rev. B
    • Corona, M.1    Gori-Giorgi, P.2    Perdew, J.P.3
  • 34
    • 0037104292 scopus 로고    scopus 로고
    • cond-mat/0206456
    • B. Davoudi, M. Polini, R. Asgari, and M. P. Tosi, Phys. Rev. B 66, 075110 (2002); cond-mat/0206456. B. Davoudi, R. Asgari, M. Polini, and M. P. Tosi, Phys. Rev. B 68, 155112 (2003).
    • (2002) Phys. Rev. B , vol.66 , pp. 075110
    • Davoudi, B.1    Polini, M.2    Asgari, R.3    Tosi, M.P.4
  • 35
    • 1642329478 scopus 로고    scopus 로고
    • B. Davoudi, M. Polini, R. Asgari, and M. P. Tosi, Phys. Rev. B 66, 075110 (2002); cond-mat/0206456. B. Davoudi, R. Asgari, M. Polini, and M. P. Tosi, Phys. Rev. B 68, 155112 (2003).
    • (2003) Phys. Rev. B , vol.68 , pp. 155112
    • Davoudi, B.1    Asgari, R.2    Polini, M.3    Tosi, M.P.4
  • 38
    • 85039582943 scopus 로고    scopus 로고
    • edited by J. Cioslowski, submitted to Ann. Phys. (Leipzig)
    • P. Ziesche and F. Tasnádi, in: Pobierowo Proceedings, edited by J. Cioslowski, submitted to Ann. Phys. (Leipzig).
    • Pobierowo Proceedings
    • Ziesche, P.1    Tasnádi, F.2
  • 39
    • 34250917209 scopus 로고
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1932) Z. Phys. , vol.73 , pp. 169
    • Güttinger, P.1
  • 40
    • 0037687393 scopus 로고
    • edited by H. Geiger and K. Scheel (Springer, Berlin)
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1933) Handbuch der Physik , vol.24 , Issue.1 , pp. 162
    • Pauli, W.1
  • 41
    • 84932449973 scopus 로고
    • edited by S. Flügge (Springer, Berlin)
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1958) Handbuch der Physik , vol.5 , Issue.1 , pp. 83
  • 42
    • 84978238358 scopus 로고
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1926) Ann. Phys. (Leipzig) [4] , vol.80 , pp. 437
    • Schrödinger, E.1
  • 43
    • 34250915197 scopus 로고
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1928) Z. Phys. , vol.51 , pp. 165
    • Born, M.1    Fock, V.2
  • 44
    • 0003996281 scopus 로고
    • Deuticke, Leipzig
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1937) Einführung in die Quantenchemie , pp. 61
    • Hellmann, H.1
  • 45
    • 0013007999 scopus 로고
    • the original russian version is of 23 October, ONTI, Moscow and Leningrad
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1936) Quantenchemie , pp. 428
    • Gel'man, G.1
  • 46
    • 34547564932 scopus 로고
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1939) Phys. Rev. , vol.56 , pp. 340
    • Feynman, R.P.1
  • 47
    • 0004112731 scopus 로고
    • Academic Press, New York
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1974) The Variation Method in Quantum Chemistry
    • Epstein, S.T.1
  • 48
    • 0345170030 scopus 로고    scopus 로고
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (2003) Phys. Rev. B , vol.68 , pp. 033105
    • Alon, O.E.1    Cederbaum, L.S.2
  • 49
    • 1642358695 scopus 로고
    • The general parameter theorem ∂E/∂λ = (∂Ĥ/∂λ) for bound states of Ĥ is due to P. Güttinger, Z. Phys. 73, 169 (1932), cf. his eq. (11). It is later given by W. Pauli, in: Handbuch der Physik, Band XXIV, Teil 1, edited by H. Geiger and K. Scheel (Springer, Berlin, 1933), p. 162; reprinted in: Handbuch der Physik, Band V, Teil 1, edited by S. Flügge (Springer, Berlin, 1958), p. 83. λ can be any parameter (coupling constant, nuclear coordinate, . . .). For a coupling constant A and in lowest order of perturbation theory, the theorem was given already by E. Schrödinger, Ann. Phys. (Leipzig) [4], 80, 437 (1926), cf. his eq. (7''). The theorem is also implicitly contained in eq. (28) of the paper by M. Born and V.Fock, Z. Phys. 51, 165 (1928). -Hellmann and later Feynman explicitly referred to the special case of nuclear coordinates within the Born-Oppenheimer approximation, leading to the 'Hellmann-Feynman' forces upon nuclei: H. Hellmann, Einführung in die Quantenchemie (Deuticke, Leipzig, 1937), pp. 61, 285 (the original russian version is of 23 October 1936: G. Gel'man, Quantenchemie (ONTI, Moscow and Leningrad), p. 428) and R. P. Feynman, Phys. Rev. 56, 340 (1939). Hellmann stressed, that the forces calculated in this way sensitively depend on the electron density used therein. For variationally determined densities cf. S. T. Epstein, The Variation Method in Quantum Chemistry (Academic Press, New York, 1974). At degeneracies the theorem is discussed by O. E. Alon and L. S. Cederbaum, Phys. Rev. B 68, 033105 (2003). The Hellmann-Feynman theorem has been generalized to Gamow states by P. Ziesche, K. Kunze, and B. Milek, J. Phys. A 20, 2859 (1987).
    • (1987) J. Phys. A , vol.20 , pp. 2859
    • Ziesche, P.1    Kunze, K.2    Milek, B.3
  • 52
    • 0037017069 scopus 로고    scopus 로고
    • Z. Qian and G. Vignale, Phys. Rev. Lett. 88, 056404 (2002). M. Polini and M. P. Tosi, Phys. Rev. B 63, 045118 (2001). C. Caccamo, G. Pizzimenti, M. Parinello, and M. P. Tosi, Lett. Nuovo Cimento 11, 156 (1974).
    • (2002) Phys. Rev. Lett. , vol.88 , pp. 056404
    • Qian, Z.1    Vignale, G.2
  • 53
    • 0035131453 scopus 로고    scopus 로고
    • Z. Qian and G. Vignale, Phys. Rev. Lett. 88, 056404 (2002). M. Polini and M. P. Tosi, Phys. Rev. B 63, 045118 (2001). C. Caccamo, G. Pizzimenti, M. Parinello, and M. P. Tosi, Lett. Nuovo Cimento 11, 156 (1974).
    • (2001) Phys. Rev. B , vol.63 , pp. 045118
    • Polini, M.1    Tosi, M.P.2
  • 58
    • 0000057792 scopus 로고
    • M. B. Ruskai, J. Math. Phys. 11, 3218 (1970). K. Yasuda, Phys. Rev. A 63, 032517 (2001).
    • (1970) J. Math. Phys. , vol.11 , pp. 3218
    • Ruskai, M.B.1
  • 59
    • 33646204489 scopus 로고    scopus 로고
    • M. B. Ruskai, J. Math. Phys. 11, 3218 (1970). K. Yasuda, Phys. Rev. A 63, 032517 (2001).
    • (2001) Phys. Rev. A , vol.63 , pp. 032517
    • Yasuda, K.1
  • 60
    • 0002711818 scopus 로고    scopus 로고
    • edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York)
    • P. Ziesche, in: Electron Correlations and Materials Properties, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 1999), p. 361. P. Ziesche, J. Tao, M. Seidl, and J. P. Perdew, Int. J. Quantum Chem. 77, 819 (2000). P. Ziesche, in: Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer/Plenum, New York, 2000), p. 33. For finite systems, particle number fluctuations in fragments have been discussed by P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995), p. 157. Further refs. are in P. Ziesche, K. Pernal, and F. Tasnádi, phys. stat. sol. (b) 239, 185 (2003).
    • (1999) Electron Correlations and Materials Properties , pp. 361
    • Ziesche, P.1
  • 61
    • 0001221975 scopus 로고    scopus 로고
    • P. Ziesche, in: Electron Correlations and Materials Properties, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 1999), p. 361. P. Ziesche, J. Tao, M. Seidl, and J. P. Perdew, Int. J. Quantum Chem. 77, 819 (2000). P. Ziesche, in: Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer/Plenum, New York, 2000), p. 33. For finite systems, particle number fluctuations in fragments have been discussed by P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995), p. 157. Further refs. are in P. Ziesche, K. Pernal, and F. Tasnádi, phys. stat. sol. (b) 239, 185 (2003).
    • (2000) Int. J. Quantum Chem. , vol.77 , pp. 819
    • Ziesche, P.1    Tao, J.2    Seidl, M.3    Perdew, J.P.4
  • 62
    • 0001927525 scopus 로고    scopus 로고
    • edited by J. Cioslowski (Kluwer/Plenum, New York)
    • P. Ziesche, in: Electron Correlations and Materials Properties, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 1999), p. 361. P. Ziesche, J. Tao, M. Seidl, and J. P. Perdew, Int. J. Quantum Chem. 77, 819 (2000). P. Ziesche, in: Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer/Plenum, New York, 2000), p. 33. For finite systems, particle number fluctuations in fragments have been discussed by P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995), p. 157. Further refs. are in P. Ziesche, K. Pernal, and F. Tasnádi, phys. stat. sol. (b) 239, 185 (2003).
    • (2000) Many-electron Densities and Reduced Density Matrices , pp. 33
    • Ziesche, P.1
  • 63
    • 0004116685 scopus 로고
    • Springer, Berlin
    • P. Ziesche, in: Electron Correlations and Materials Properties, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 1999), p. 361. P. Ziesche, J. Tao, M. Seidl, and J. P. Perdew, Int. J. Quantum Chem. 77, 819 (2000). P. Ziesche, in: Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer/Plenum, New York, 2000), p. 33. For finite systems, particle number fluctuations in fragments have been discussed by P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995), p. 157. Further refs. are in P. Ziesche, K. Pernal, and F. Tasnádi, phys. stat. sol. (b) 239, 185 (2003).
    • (1995) Electron Correlation in Molecules and Solids, 3rd Ed. , pp. 157
    • Fulde, P.1
  • 64
    • 0242556799 scopus 로고    scopus 로고
    • P. Ziesche, in: Electron Correlations and Materials Properties, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 1999), p. 361. P. Ziesche, J. Tao, M. Seidl, and J. P. Perdew, Int. J. Quantum Chem. 77, 819 (2000). P. Ziesche, in: Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer/Plenum, New York, 2000), p. 33. For finite systems, particle number fluctuations in fragments have been discussed by P. Fulde, Electron Correlation in Molecules and Solids, 3rd ed. (Springer, Berlin, 1995), p. 157. Further refs. are in P. Ziesche, K. Pernal, and F. Tasnádi, phys. stat. sol. (b) 239, 185 (2003).
    • (2003) Phys. Stat. Sol. (b) , vol.239 , pp. 185
    • Ziesche, P.1    Pernal, K.2    Tasnádi, F.3
  • 66
    • 0001927525 scopus 로고    scopus 로고
    • edited by J. Cioslowski (Kluwer/Plenum, New York)
    • For the cumulant expansion of reduced densities and reduced density matrices cf. e.g. P. Ziesche, in: Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer/Plenum, New York, 2000), p. 33.
    • (2000) Many-electron Densities and Reduced Density Matrices , pp. 33
    • Ziesche, P.1
  • 67
    • 0000622964 scopus 로고    scopus 로고
    • P. Ziesche, Phys. Lett. A 195, 213 (1994); Int. J. Quantum Chem. 60, 1361 (1996); in: Electron Correlations and Materials Properties, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 1999), p. 361. M. Levy and P. Ziesche, J. Chem. Phys. 115, 9110 (2001).
    • (1994) Phys. Lett. A , vol.195 , pp. 213
    • Ziesche, P.1
  • 68
    • 2442453001 scopus 로고    scopus 로고
    • P. Ziesche, Phys. Lett. A 195, 213 (1994); Int. J. Quantum Chem. 60, 1361 (1996); in: Electron Correlations and Materials Properties, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 1999), p. 361. M. Levy and P. Ziesche, J. Chem. Phys. 115, 9110 (2001).
    • (1996) Int. J. Quantum Chem. , vol.60 , pp. 1361
  • 69
    • 0000622964 scopus 로고    scopus 로고
    • Kluwer/Plenum, New York
    • P. Ziesche, Phys. Lett. A 195, 213 (1994); Int. J. Quantum Chem. 60, 1361 (1996); in: Electron Correlations and Materials Properties, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 1999), p. 361. M. Levy and P. Ziesche, J. Chem. Phys. 115, 9110 (2001).
    • (1999) Electron Correlations and Materials Properties , pp. 361
    • Gonis, A.1    Kioussis, N.2    Ciftan, M.3
  • 70
    • 0035935801 scopus 로고    scopus 로고
    • P. Ziesche, Phys. Lett. A 195, 213 (1994); Int. J. Quantum Chem. 60, 1361 (1996); in: Electron Correlations and Materials Properties, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 1999), p. 361. M. Levy and P. Ziesche, J. Chem. Phys. 115, 9110 (2001).
    • (2001) J. Chem. Phys. , vol.115 , pp. 9110
    • Levy, M.1    Ziesche, P.2
  • 71
    • 0001221975 scopus 로고    scopus 로고
    • 2μ(k) appears also in the mentioned fluctuation-correlation analysis of the spin-unpolarized HEG. [P. Ziesche, J. Tao, M. Seidl, and J. P. Perdew, Int. J. Quantum Chem. 77, 819 (2000)] and in P.M.W. Gill, A.M. Lee, N. Nair, and R. D. Adamson, J. Mol. Struct. (Theochem) 506, 303 (2002).
    • (2000) Int. J. Quantum Chem. , vol.77 , pp. 819
    • Ziesche, P.1    Tao, J.2    Seidl, M.3    Perdew, J.P.4
  • 72
    • 0034647670 scopus 로고    scopus 로고
    • 2μ(k) appears also in the mentioned fluctuation-correlation analysis of the spin-unpolarized HEG. [P. Ziesche, J. Tao, M. Seidl, and J. P. Perdew, Int. J. Quantum Chem. 77, 819 (2000)] and in P.M.W. Gill, A.M. Lee, N. Nair, and R. D. Adamson, J. Mol. Struct. (Theochem) 506, 303 (2002).
    • (2002) J. Mol. Struct. (Theochem) , vol.506 , pp. 303
    • Gill, P.M.W.1    Lee, A.M.2    Nair, N.3    Adamson, R.D.4
  • 73
    • 0037026940 scopus 로고    scopus 로고
    • P. Ziesche, Int. J. Quantum Chem. 90, 342 (2002); in: Electron Correlations and Materials Properties 2, edited by A. Gonis, N. Kioussis, and M. Ciftan (Kluwer/Plenum, New York, 2002), p. 307.
    • (2002) Int. J. Quantum Chem. , vol.90 , pp. 342
    • Ziesche, P.1
  • 76
    • 0035872736 scopus 로고    scopus 로고
    • edited by J. Cioslowski (Kluwer/Plenum, New York)
    • M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa, J. Chem. Phys. 114, 8282 (2001). cf. also H. Nakatsuji in: Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer/Plenum, New York, 2000), p. 85.
    • (2000) Many-electron Densities and Reduced Density Matrices , pp. 85
    • Nakatsuji, H.1
  • 77
    • 0036599956 scopus 로고    scopus 로고
    • D. A. Mazziotti, Phys. Rev. A 65, 062511 (2002); cf. also: Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer/Plenum, New York, 2000), p. 139.
    • (2002) Phys. Rev. A , vol.65 , pp. 062511
    • Mazziotti, D.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.