-
3
-
-
0030152909
-
-
Prakash, S.; Went, M. J.; Blower, P. J. Nucl. Med. Biol. 1996, 23, 543.
-
(1996)
Nucl. Med. Biol.
, vol.23
, pp. 543
-
-
Prakash, S.1
Went, M.J.2
Blower, P.J.3
-
4
-
-
0030808605
-
-
Schoeneich, G.; Palmedo, H.; Heimbach, D.; Biersack, H. J.; Muller, S. C. Onkologie 1997, 20, 316.
-
(1997)
Onkologie
, vol.20
, pp. 316
-
-
Schoeneich, G.1
Palmedo, H.2
Heimbach, D.3
Biersack, H.J.4
Muller, S.C.5
-
5
-
-
0030840675
-
-
(a) Mullen, G. E. D.; Went, M. J.; Wocadlo, S.; Powell, A. K.; Blower, P. J.; Angew. Chem., Int. Ed. Engl. 1997, 36, 1205.
-
(1997)
Angew. Chem., Int. Ed. Engl.
, vol.36
, pp. 1205
-
-
Mullen, G.E.D.1
Went, M.J.2
Wocadlo, S.3
Powell, A.K.4
Blower, P.J.5
-
6
-
-
0034604924
-
-
(b) Mullen, G. E. D.; Blower, P. J.; Price, D. J.; Powell, A. K.; Howard, M. J.; Went, M. J. Inorg. Chem. 2000, 39, 4093.
-
(2000)
Inorg. Chem.
, vol.39
, pp. 4093
-
-
Mullen, G.E.D.1
Blower, P.J.2
Price, D.J.3
Powell, A.K.4
Howard, M.J.5
Went, M.J.6
-
7
-
-
33748493181
-
-
Mullen, G. E. D.; Fässler, F. T.; Went, M. J.; Howland, K.; Stein, B.; Blower, P. J. J. Chem. Soc., Dalton Trans. 1999, 21, 3759.
-
(1999)
J. Chem. Soc., Dalton Trans.
, vol.21
, pp. 3759
-
-
Mullen, G.E.D.1
Fässler, F.T.2
Went, M.J.3
Howland, K.4
Stein, B.5
Blower, P.J.6
-
9
-
-
0024613760
-
-
(b) Prins, R.; de Beer, V. H.; Somorjai, G. A. Catal. Rev. Sci. Eng. 1989, 31, 1.
-
(1989)
Catal. Rev. Sci. Eng.
, vol.31
, pp. 1
-
-
Prins, R.1
De Beer, V.H.2
Somorjai, G.A.3
-
10
-
-
0000841508
-
-
(a) Li, J.; Miguel, D.; Morales, M. D.; Riera, V. Organometallics 1998, 17, 3448.
-
(1998)
Organometallics
, vol.17
, pp. 3448
-
-
Li, J.1
Miguel, D.2
Morales, M.D.3
Riera, V.4
-
11
-
-
0000176913
-
-
(b) Zhang, X.; Dullaghan, C. A.; Watson, E. J.; Carpenter, G. B.; Sweigart, D. A. Organometallics 1998, 17, 2067.
-
(1998)
Organometallics
, vol.17
, pp. 2067
-
-
Zhang, X.1
Dullaghan, C.A.2
Watson, E.J.3
Carpenter, G.B.4
Sweigart, D.A.5
-
12
-
-
0000334620
-
-
(c) Dullaghan, C. A.; Carpenter, G. B.; Sweigart, D. A.; Choi, D. S.; Lee, S. S.; Chung, Y. K. Organometallics 1997, 16, 5688.
-
(1997)
Organometallics
, vol.16
, pp. 5688
-
-
Dullaghan, C.A.1
Carpenter, G.B.2
Sweigart, D.A.3
Choi, D.S.4
Lee, S.S.5
Chung, Y.K.6
-
15
-
-
0029327036
-
-
(f) Feng, Q.; Rauchfuss, T. B.; Wilson, S. R. Organometallics 1995, 14, 2923.
-
(1995)
Organometallics
, vol.14
, pp. 2923
-
-
Feng, Q.1
Rauchfuss, T.B.2
Wilson, S.R.3
-
16
-
-
0002741863
-
-
(g) Bianchini, C.; Masi, D.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanibini, F. Organometallics 1998, 17, 2495.
-
(1998)
Organometallics
, vol.17
, pp. 2495
-
-
Bianchini, C.1
Masi, D.2
Meli, A.3
Peruzzini, M.4
Vizza, F.5
Zanibini, F.6
-
19
-
-
0002561106
-
-
Meyer, M., Pontikis, V., Eds.; Kluwer: Dordrecht, The Netherlands
-
(b) Galli, G.; Parrinello, M. In Computer Simulation in Material Science; Meyer, M., Pontikis, V., Eds.; Kluwer: Dordrecht, The Netherlands, 1991; p 238 and references therein.
-
(1991)
Computer Simulation in Material Science
, pp. 238
-
-
Galli, G.1
Parrinello, M.2
-
20
-
-
11944256577
-
-
(c) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannoppoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045.
-
(1992)
Rev. Mod. Phys.
, vol.64
, pp. 1045
-
-
Payne, M.C.1
Teter, M.P.2
Allan, D.C.3
Arias, T.A.4
Joannoppoulos, J.D.5
-
22
-
-
0000323669
-
-
Grotendorst, J., Ed.; Forschungszentrum Juelich, NIC Series
-
(e) Marx, D.; Hutter, J. Modern Methods and Algorithms of Quantum Chemistry; Grotendorst, J., Ed.; Forschungszentrum Juelich, NIC Series, 2000; Vol.1, p 301.
-
(2000)
Modern Methods and Algorithms of Quantum Chemistry
, vol.1
, pp. 301
-
-
Marx, D.1
Hutter, J.2
-
23
-
-
0004133266
-
-
Max-Planck-Institut fuer Festkörperforschung, Stuttgart, and IBM Research Laboratory Zürich
-
Hutter, J.; Ballone, P.; Bernasconi, M.; Focher, P.; Fois, E.; Goedecker, S.; Parrinello, M.; Tuckerman, M. CPMD; Max-Planck-Institut fuer Festkörperforschung, Stuttgart, and IBM Research Laboratory Zürich, 1998.
-
(1998)
CPMD
-
-
Hutter, J.1
Ballone, P.2
Bernasconi, M.3
Focher, P.4
Fois, E.5
Goedecker, S.6
Parrinello, M.7
Tuckerman, M.8
-
28
-
-
0345491105
-
-
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
31
-
-
0002584548
-
-
Matondo, S. O. C.; Moundford, P.; Watkin, D. J.; Jones, W. B.; Cooper, S. R. J. Chem. Soc., Chem. Commun. 1995, 161.
-
(1995)
J. Chem. Soc., Chem. Commun.
, pp. 161
-
-
Matondo, S.O.C.1
Moundford, P.2
Watkin, D.J.3
Jones, W.B.4
Cooper, S.R.5
-
32
-
-
1642321408
-
-
note
-
Although, the gas-phase geometry neglects environment effects, the structural trend reproduced by our calculations agrees with the electrospray mass spectroscopy experiments (ref 6).
-
-
-
-
34
-
-
0034722240
-
-
Magistrato, A.; VandeVondele, J.; Rothlisberger, U. Inorg. Chem. 2000, 39, 5553.
-
(2000)
Inorg. Chem.
, vol.39
, pp. 5553
-
-
Magistrato, A.1
VandeVondele, J.2
Rothlisberger, U.3
-
35
-
-
0000661243
-
-
note
-
The bond orders reported in the Table 3 are calculated with the BLYP functional on structures that have been optimized at the same level. Calculations of the bond orders have been done according to the scheme proposed by Mayer, I. Chem. Phys. Lett. 1983, 97, 270. To this end, the plane wave representation of the total wave functions was projected onto an atom-centered minimal basis of atomic pseudo wave functions. This allows a comparison of the bond orders at a qualitative level.
-
(1983)
Chem. Phys. Lett.
, vol.97
, pp. 270
-
-
Mayer, I.1
-
36
-
-
1642348940
-
-
note
-
For the oxidized pathway the dissociation limit calculated with the BP functional (22.1 kcal/mol) is 1.6 kcal/mol above the transition state (20.5 kcal/mol). Following the reaction pathway and analyzing the average constraint force we identified a very shallow minimum after the transition state in which the ethene is still weakly coordinated to the central metal. This minimum is stabilized by only 1.2 kcal/mol with respect to a barrier recrossing back to the reactants.
-
-
-
-
37
-
-
1642278986
-
-
note
-
Increasing the temperature of the system allows for an enhanced sampling of the potential energy surface, which makes it possible to follow reaction pathways within the limited time of our simulations (typically of the order of a few tens of picoseconds).
-
-
-
-
38
-
-
1642301798
-
-
note
-
In the fourth frame we do not show the ethene molecule that is still present in the simulation cell.
-
-
-
|