-
2
-
-
11544350211
-
Optimal eavesdropping in quantum cryptography with six state
-
D. Bruss. Optimal Eavesdropping in Quantum Cryptography with Six State. Phys. Rev. Lett., 81:3018-3021, 1998.
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 3018-3021
-
-
Bruss, D.1
-
3
-
-
0033702560
-
Quantum cryptography using larger alphabets
-
H. Bechmann-Pasquinucci and W. Tittel. Quantum cryptography using larger alphabets. Phys. Rev. A, 61(6):062308, 2000.
-
(2000)
Phys. Rev. A
, vol.61
, Issue.6
, pp. 062308
-
-
Bechmann-Pasquinucci, H.1
Tittel, W.2
-
4
-
-
0141991892
-
A new proof of the existence of mutually unbiased bases
-
S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and Vatan F. A new proof of the existence of mutually unbiased bases. Algorithmica, 34:512-528, 2002.
-
(2002)
Algorithmica
, vol.34
, pp. 512-528
-
-
Bandyopadhyay, S.1
Boykin, P.O.2
Roychowdhury, V.3
Vatan, F.4
-
5
-
-
0016599548
-
Bounds for systems of lines, and Jacobi polynomials
-
P. Delsarte, J. M. Goethals, and J. J. Seidel. Bounds for systems of lines, and Jacobi polynomials. Philips. Res. Repts., pages 91-105, 1975.
-
(1975)
Philips. Res. Repts.
, pp. 91-105
-
-
Delsarte, P.1
Goethals, J.M.2
Seidel, J.J.3
-
6
-
-
0000588633
-
T-designs in projective spaces
-
S. G. Hoggar. t-designs in projective spaces. Europ. J. Combin., 3:233-254, 1982.
-
(1982)
Europ. J. Combin.
, vol.3
, pp. 233-254
-
-
Hoggar, S.G.1
-
8
-
-
0004586188
-
Optimal state-determination by mutually unbiased measurements
-
W. K. Wootters and B. D. Fields. Optimal state-determination by mutually unbiased measurements. Ann. Physics, 191:363-381, 1989.
-
(1989)
Ann. Physics
, vol.191
, pp. 363-381
-
-
Wootters, W.K.1
Fields, B.D.2
-
9
-
-
36149039233
-
Geometrical description of quantal state determination
-
I. D. Ivanovic. Geometrical description of quantal state determination. J. Phys. A, 14:3241-3245, 1981.
-
(1981)
J. Phys. A
, vol.14
, pp. 3241-3245
-
-
Ivanovic, I.D.1
-
11
-
-
0000764966
-
How to ascertain the values of σx, σy, and σz
-
L. Vaidman, Y. Aharonov, and D. Z. Albert. How to ascertain the values of σx, σy, and σz. Phys. Rev. Lett., 58:1385-1387, 1987.
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 1385-1387
-
-
Vaidman, L.1
Aharonov, Y.2
Albert, D.Z.3
-
12
-
-
0035962578
-
The mean king's problem: Prime degrees of freedom
-
B.-G. Englert and Y. Aharonov. The mean king's problem: Prime degrees of freedom. Phys. Letters, 284:1-5, 2001.
-
(2001)
Phys. Letters
, vol.284
, pp. 1-5
-
-
Englert, B.-G.1
Aharonov, Y.2
-
13
-
-
0142052600
-
Solution to the king's problem in prime dimensions
-
P. K. Aravind. Solution to the king's problem in prime dimensions. Z. Naturforschung, 58:2212, 2003.
-
(2003)
Z. Naturforschung
, vol.58
, pp. 2212
-
-
Aravind, P.K.1
-
15
-
-
25144524404
-
Constructions of mutually unbiased bases
-
Mullen, Gary L. and Poli, A. and Stichtenoth, H. (eds.), Lecture Notes in Computer Science 2984, See also preprint quant-ph/0309120
-
A. Klappenecker and M. Rötteler. Constructions of mutually unbiased bases, in Finite Fields and Applications: 7th International Conference, Fq7, Mullen, Gary L. and Poli, A. and Stichtenoth, H. (eds.), Lecture Notes in Computer Science 2984, pages 137-144, 2003. See also preprint quant-ph/0309120.
-
(2003)
Finite Fields and Applications: 7th International Conference, Fq7
, pp. 137-144
-
-
Klappenecker, A.1
Rötteler, M.2
-
16
-
-
16244413663
-
-
Preprint quant-ph/0406175, accepted for presentation at EQIS 04, Tokyo
-
M. Grassl. On SIC-POVMs and MUBs in dimension 6. Preprint quant-ph/0406175, accepted for presentation at EQIS 04, Tokyo, 2004.
-
(2004)
On SIC-POVMs and MUBs in Dimension
, vol.6
-
-
Grassl, M.1
-
20
-
-
0004483805
-
-
Design Theory, Cambridge University Press, 2nd edition
-
Th. Beth, D. Jungnickel, and H. Lenz. Design Theory, volume I of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2nd edition, 1999.
-
(1999)
Encyclopedia of Mathematics and Its Applications
, vol.1
-
-
Beth, Th.1
Jungnickel, D.2
Lenz, H.3
-
21
-
-
0004483805
-
-
Design Theory, Cambridge University Press, 2nd edition
-
Th. Beth, D. Jungnickel, and H. Lenz. Design Theory, volume II of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2nd edition, 1999.
-
(1999)
Encyclopedia of Mathematics and Its Applications
, vol.2
-
-
Beth, Th.1
Jungnickel, D.2
Lenz, H.3
-
22
-
-
0000051145
-
Mutually orthogonal Latin squares (MOLS)
-
chapter Colbourn, C. J. and Dinitz, J. H. (eds.), CRC Press
-
R. J. R. Abel, A. E. Brouwer, C. J. Colbourn, and J. H. Dinitz. chapter "Mutually orthogonal Latin squares (MOLS)", pages 111-142, in The CRC Handbook of Combinatorial Designs, Colbourn, C. J. and Dinitz, J. H. (eds.), CRC Press, 1996.
-
(1996)
The CRC Handbook of Combinatorial Designs
, pp. 111-142
-
-
Abel, R.J.R.1
Brouwer, A.E.2
Colbourn, C.J.3
Dinitz, J.H.4
-
23
-
-
0042113497
-
On the maximal number of pairwise orthogonal Latin squares of a given order
-
S. Chowla, P. Erdös, and E. G. Straus. On the maximal number of pairwise orthogonal Latin squares of a given order. Canadian J. Math., 12:204-208, 1960.
-
(1960)
Canadian J. Math.
, vol.12
, pp. 204-208
-
-
Chowla, S.1
Erdös, P.2
Straus, E.G.3
-
24
-
-
0000610109
-
Concerning the number of mutually orthogonal Latin squares
-
R. M. Wilson. Concerning the number of mutually orthogonal Latin squares. Discr. Math., 9:181-198, 1974.
-
(1974)
Discr. Math.
, vol.9
, pp. 181-198
-
-
Wilson, R.M.1
-
25
-
-
10144256724
-
Eine Bemerkung zur Abschätzung der Anzahl orthogonaler lateinischer Quadrate mittels Siebverfahren
-
Th. Beth. Eine Bemerkung zur Abschätzung der Anzahl orthogonaler lateinischer Quadrate mittels Siebverfahren. Abh. Math. Sem. Hamburg, 53:284-288, 1983.
-
(1983)
Abh. Math. Sem. Hamburg
, vol.53
, pp. 284-288
-
-
Beth, Th.1
-
26
-
-
0041740939
-
An estimate of the number of mutually orthogonal Latin squares
-
Y. Chang. An estimate of the number of mutually orthogonal Latin squares. J. Comb. Math. Comb. Comput., 21:217-222, 1996.
-
(1996)
J. Comb. Math. Comb. Comput.
, vol.21
, pp. 217-222
-
-
Chang, Y.1
|