메뉴 건너뛰기




Volumn 27, Issue 7, 2005, Pages 746-751

Building of constant life diagrams of fatigue using artificialneural networks

Author keywords

ANN; Constant life diagram of fatigue; Plastic reinforced with fiberglass

Indexed keywords

ALGORITHMS; FAILURE (MECHANICAL); GLASS FIBER REINFORCED PLASTICS; MATHEMATICAL MODELS; NEURAL NETWORKS; PROBABILITY; RESIN TRANSFER MOLDING; STRESSES;

EID: 16244373930     PISSN: 01421123     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijfatigue.2005.02.003     Document Type: Article
Times cited : (50)

References (12)
  • 1
    • 0033360290 scopus 로고    scopus 로고
    • The use of neural network for the prediction of fatigue lives of composite materials
    • J.A. Lee, D.P. Almond, and B. Harris The use of neural network for the prediction of fatigue lives of composite materials Compos Part A: Appl Sci Manuf 30 10 1999 1159 1169
    • (1999) Compos Part A: Appl Sci Manuf , vol.30 , Issue.10 , pp. 1159-1169
    • Lee, J.A.1    Almond, D.P.2    Harris, B.3
  • 2
    • 0036680740 scopus 로고    scopus 로고
    • Complex stress state effect on fatigue life of GRP laminates. Part I, experimental
    • T.P. Philippidis, and A.P. Vassilopoulos Complex stress state effect on fatigue life of GRP laminates. Part I, experimental Int J Fatigue 24 2002 813 823
    • (2002) Int J Fatigue , vol.24 , pp. 813-823
    • Philippidis, T.P.1    Vassilopoulos, A.P.2
  • 3
    • 0035399535 scopus 로고    scopus 로고
    • Fatigue life prediction of unidirectional glass fiber/epoxy composite laminate using neural network
    • Y. Al-Assaf, and H. El Kadi Fatigue life prediction of unidirectional glass fiber/epoxy composite laminate using neural network Compos Struct 53 1 2001 65 71
    • (2001) Compos Struct , vol.53 , Issue.1 , pp. 65-71
    • Al-Assaf, Y.1    El Kadi, H.2
  • 4
    • 0036468586 scopus 로고    scopus 로고
    • Prediction of the fatigue life prediction of unidirectional glass fiber/epoxy composite laminate using different neural network paradigms
    • H. El Kadi, and Y. Al-Assaf Prediction of the fatigue life prediction of unidirectional glass fiber/epoxy composite laminate using different neural network paradigms Compos Struct 55 2002 239 246
    • (2002) Compos Struct , vol.55 , pp. 239-246
    • El Kadi, H.1    Al-Assaf, Y.2
  • 5
    • 0036659710 scopus 로고    scopus 로고
    • Energy based fatigue life prediction of fiberglass/epoxy composites using modular neural network
    • H. El kadi, and Y. Al-Assaf Energy based fatigue life prediction of fiberglass/epoxy composites using modular neural network Compos Struct 57 2002 85 89
    • (2002) Compos Struct , vol.57 , pp. 85-89
    • El Kadi, H.1    Al-Assaf, Y.2
  • 7
    • 0007018469 scopus 로고    scopus 로고
    • DOE/MSU 2003 Montana State University-Bozeman
    • DOE/MSU 2003. Composite Material Fatigue Database, Montana State University-Bozeman, p. 272.
    • Composite Material Fatigue Database , pp. 272
  • 8
    • 84894416173 scopus 로고    scopus 로고
    • Spectrum fatigue lifetime and residual strength for fiberglass laminates in tension
    • N. Wahl, D. Samborsky, J. Mandell, and D. Cairns Spectrum fatigue lifetime and residual strength for fiberglass laminates in tension Wind Energy 2001 2001 49 59
    • (2001) Wind Energy 2001 , pp. 49-59
    • Wahl, N.1    Samborsky, D.2    Mandell, J.3    Cairns, D.4
  • 9
    • 16244416007 scopus 로고    scopus 로고
    • Effects of modeling assumptions on the accuracy of spectrum fatigue lifetime predictions for a fiberglass laminate
    • N. Wahl, D. Samborsky, J. Mandell, and D. Cairns Effects of modeling assumptions on the accuracy of spectrum fatigue lifetime predictions for a fiberglass laminate Wind Energy 2002 2002 19 26
    • (2002) Wind Energy 2002 , pp. 19-26
    • Wahl, N.1    Samborsky, D.2    Mandell, J.3    Cairns, D.4
  • 11
    • 0029140176 scopus 로고
    • A review of fatigue damage modelling in the context of marine FRP laminates
    • P. Read, and R. Shenoi A review of fatigue damage modelling in the context of marine FRP laminates Marine Structures 8 1995 257 278
    • (1995) Marine Structures , vol.8 , pp. 257-278
    • Read, P.1    Shenoi, R.2
  • 12
    • 0035754396 scopus 로고    scopus 로고
    • Fast and accurate neural network GaAs MESFET model for time domain circuit simulation
    • Silva PHF, Melo MAB, Dória Neto AD. Fast and accurate neural network GaAs MESFET model for time domain circuit simulation, SBMO/IEEE MTT-S IMOC Proceedings; 2001.
    • (2001) SBMO/IEEE MTT-S IMOC Proceedings
    • Phf, S.1    Mab, M.2    Dória Neto, A.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.