메뉴 건너뛰기




Volumn 116, Issue 2, 2001, Pages 227-233

Intersection properties of Helly families

Author keywords

Brouwer fixed point theorem; Contractible spaces; Helly convex set theorem; K connected spaces

Indexed keywords


EID: 15944429020     PISSN: 0016660X     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0166-8641(00)00074-2     Document Type: Article
Times cited : (2)

References (8)
  • 1
    • 84967708669 scopus 로고
    • Intersecting families of sets and the topology of cones in economics
    • G. Chichilnisky, Intersecting families of sets and the topology of cones in economics, Bull. Amer. Math. Soc. 29 (2) (1993) 189-207.
    • (1993) Bull. Amer. Math. Soc. , vol.29 , Issue.2 , pp. 189-207
    • Chichilnisky, G.1
  • 2
    • 0742284040 scopus 로고    scopus 로고
    • John nash and the nobel prize
    • D. Gale, John Nash and the Nobel Prize, Focus 15 (2) 4.
    • Focus , vol.15 , Issue.2 , pp. 4
    • Gale, D.1
  • 4
    • 0031489845 scopus 로고    scopus 로고
    • The poincaré-miranda Theorem
    • W. Kulpa, The Poincaré-Miranda theorem, Amer. Math. Monthly 104 (6) (1997) 545-550.
    • (1997) Amer. Math. Monthly , vol.104 , Issue.6 , pp. 545-550
    • Kulpa, W.1
  • 5
    • 0038480121 scopus 로고    scopus 로고
    • Poincaré and domain invariance theorem
    • W. Kulpa, Poincaré and domain invariance theorem, Acta Univ. Carolin. Math. Phys. 39 (1-2) (1998) 127-136.
    • (1998) Acta Univ. Carolin. Math. Phys. , vol.39 , Issue.1-2 , pp. 127-136
    • Kulpa, W.1
  • 6
    • 0042406810 scopus 로고    scopus 로고
    • Convexity and the Brouwer fixed point theorem
    • W. Kulpa, Convexity and the Brouwer fixed point theorem, Topology Proc. 22 (1997) 211-235.
    • (1997) Topology Proc. , vol.22 , pp. 211-235
    • Kulpa, W.1
  • 7
    • 0039612424 scopus 로고
    • A nobel prize for john nash
    • J. Milnor, A Nobel Prize for John Nash, Math. Intelligencer 17 (3) (1995) 11-17.
    • (1995) Math. Intelligencer , vol.17 , Issue.3 , pp. 11-17
    • Milnor, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.