메뉴 건너뛰기




Volumn 13, Issue 2, 2000, Pages 143-150

Study of elastic wave propagation in two-phase anisotropic media by numerical modeling of pseudospectral method

Author keywords

Elastic parameters; Natural coordinate; Numerical modeling; Observed coordinate; Pseudospectral method; Two phase anisotropy

Indexed keywords


EID: 15944426177     PISSN: 10009116     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11589-000-0003-1     Document Type: Article
Times cited : (12)

References (13)
  • 1
    • 24944571072 scopus 로고
    • Theory of elasticity and consolidation for a porous anisotropic solid
    • Biot M A. 1955. Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys, 26:182-185
    • (1955) J Appl Phys , vol.26 , pp. 182-185
    • Biot, M.A.1
  • 2
    • 36849137954 scopus 로고
    • Mechanics of deformation and acoustic propagation in porous media
    • Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. J Appl Phys, 33:1 482-1 498
    • (1962) J Appl Phys , vol.33 , pp. 1482-1498
    • Biot, M.A.1
  • 3
    • 77956725039 scopus 로고
    • Theory of propagation of elastic waves in fluid-saturated porous solid, part I: Low-frequency range
    • Biot M A. 1956. Theory of propagation of elastic waves in fluid-saturated porous solid, part I: Low-frequency range. J Acoust Soc Amer, 28:168-178
    • (1956) J Acoust Soc Amer , vol.28 , pp. 168-178
    • Biot, M.A.1
  • 4
    • 0010904723 scopus 로고    scopus 로고
    • Beijing: Higher Education Press, (in Chinese)
    • Compiler Group of Mathematics Handbook. 1997. Mathematics Handbook. Beijing: Higher Education Press, 327-330 (in Chinese)
    • (1997) Mathematics Handbook , pp. 327-330
  • 5
    • 0029416347 scopus 로고
    • Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method
    • Dai N, Vafidis A, Kanasewich E R. 1995. Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method. Geophysics, 60: 327-340
    • (1995) Geophysics , vol.60 , pp. 327-340
    • Dai, N.1    Vafidis, A.2    Kanasewich, E.R.3
  • 6
    • 0023525582 scopus 로고
    • The pseudospectral method-comparisons with finite differences for the elastic wave equation
    • Fomberg B. 1987. The pseudospectral method-comparisons with finite differences for the elastic wave equation. Geophysics, 52(4): 483-501
    • (1987) Geophysics , vol.52 , Issue.4 , pp. 483-501
    • Fomberg, B.1
  • 7
    • 0020331145 scopus 로고
    • Forward modeling by a Fourier method
    • Kosloff D D, Baysal. 1982. Forward modeling by a Fourier method. Geophysics, 47(10): 1 402-1 412
    • (1982) Geophysics , vol.47 , Issue.10 , pp. 1402-1412
    • Kosloff, D.D.1    Baysal2
  • 8
    • 15944407579 scopus 로고    scopus 로고
    • Research on propagation properties of elastic waves in two-phase anisotropic media
    • Liu Y, Li C C. 1999. Research on propagation properties of elastic waves in two-phase anisotropic media. Acta Seismohgica Sinica, 12(4): 405-412
    • (1999) Acta Seismohgica Sinica , vol.12 , Issue.4 , pp. 405-412
    • Liu, Y.1    Li, C.C.2
  • 9
    • 0028601010 scopus 로고
    • Seismic wave propagation in transversely isotropic porous media
    • in Chinese
    • Liu Y B, Li Y M, Wu R S. 1994. Seismic wave propagation in transversely isotropic porous media. Acta Geophysica Sinica, 37(4): 499-514 (in Chinese)
    • (1994) Acta Geophysica Sinica , vol.37 , Issue.4 , pp. 499-514
    • Liu, Y.B.1    Li, Y.M.2    Wu, R.S.3
  • 11
    • 0019999072 scopus 로고
    • Computed waveforms in transversely isotropic media
    • White J E. 1982. Computed waveforms in transversely isotropic media. Geophysics, 47:771-783
    • (1982) Geophysics , vol.47 , pp. 771-783
    • White, J.E.1
  • 12
    • 0025660702 scopus 로고
    • Velocity anisotropic terminology for geophysicists
    • Winterstein D F. 1990. Velocity anisotropic terminology for geophysicists. Geophysics, 55:1 070-1 088
    • (1990) Geophysics , vol.55 , pp. 1070-1088
    • Winterstein, D.F.1
  • 13
    • 0025925895 scopus 로고
    • Numerical simulation of seismic responses of poroelastic reservoirs using Biot theory
    • Zhu X, McMechan G A. 1991. Numerical simulation of seismic responses of poroelastic reservoirs using Biot theory. Geophysics, 56: 328-339
    • (1991) Geophysics , vol.56 , pp. 328-339
    • Zhu, X.1    McMechan, G.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.