메뉴 건너뛰기




Volumn 2, Issue , 2004, Pages 1471-1474

Hyperspectral feature selection for forest classification

Author keywords

Canonical transformation; Classification; Feature selection; Hyperspectral; feature extraction; Minimum noise fraction; Principal components analysis

Indexed keywords

CANONICAL TRANSFORMATION; FEATURE SELECTION; HYPERSPECTRAL IMAGERY; MINIMUM NOISE FRACTION (MNF);

EID: 15944403980     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (3)
  • 3
    • 0033311252 scopus 로고    scopus 로고
    • Interference and noise-adjusted principal components analysis
    • Sept.
    • C. I. Chang and Q. Du, Interference and Noise-Adjusted Principal Components Analysis, IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, Sept. 1999.
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.5
    • Chang, C.I.1    Du, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.