메뉴 건너뛰기




Volumn , Issue , 2004, Pages 195-202

Dimension reduction using feature extraction methods for real-time misuse detection systems

Author keywords

Component analysis; Feature selection; Network security; Real time misuse intrusion detection; Sensitivity mismatch measure; Specificity mismatch measure

Indexed keywords

COMPONENT ANALYSIS; FEATURE SELECTION; REAL-TIME MISUSE INTRUSION DETECTION; SENSITIVITY MISMATCH MEASURE; SPECIFICITY MISMATCH MEASURE;

EID: 15944386957     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (37)

References (24)
  • 4
    • 3543127088 scopus 로고    scopus 로고
    • IDDM: Intrusion detection using data mining techniques
    • Defense Science and Technology Organization, Australia
    • T. Abraham, "IDDM: Intrusion Detection using Data Mining Techniques," Tech. Rep. DSTO-GD-0286, Defense Science and Technology Organization, Australia, 2000.
    • (2000) Tech. Rep. , vol.DSTO-GD-0286
    • Abraham, T.1
  • 5
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems
    • November
    • W. Lee and S. J. Stolfo, "A Framework for Constructing Features and Models for Intrusion Detection Systems," ACM Transactions on Information and System Security, vol. 3, pp. 227-261, November 2000.
    • (2000) ACM Transactions on Information and System Security , vol.3 , pp. 227-261
    • Lee, W.1    Stolfo, S.J.2
  • 6
    • 0141464248 scopus 로고    scopus 로고
    • HIDE: A hierarchical network intrusion detection system using statistical preprocessing and neural network classification
    • (New York), IEEE Press, June
    • Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, "HIDE: a Hierarchical Network Intrusion Detection System Using Statistical Preprocessing and Neural Network Classification," in Proceedings of the 2001 IEEE Workshop on Information Assurance, (New York), pp. 85-90, IEEE Press, June 2001.
    • (2001) Proceedings of the 2001 IEEE Workshop on Information Assurance , pp. 85-90
    • Zhang, Z.1    Li, J.2    Manikopoulos, C.N.3    Jorgenson, J.4    Ucles, J.5
  • 7
    • 0013029835 scopus 로고    scopus 로고
    • PNrule: A new framework for learning classifier models in data mining (a case-study in network intrusion detection)
    • Department of Computer Science, University of Minnesota, USA
    • R. Agarwal and M. V. Joshi, "PNrule: A New Framework for Learning Classifier Models in Data Mining (A Case-Study in Network Intrusion Detection)," Tech. Rep. DSTO-GD-0286, Department of Computer Science, University of Minnesota, USA, 2000.
    • (2000) Tech. Rep. , vol.DSTO-GD-0286
    • Agarwal, R.1    Joshi, M.V.2
  • 10
    • 1642354876 scopus 로고    scopus 로고
    • KDD-99 classifier learning contest: LLSoft's results overview
    • January
    • I. Levin, "KDD-99 Classifier Learning Contest: LLSoft's Results Overview," SIGKDD Explorations, vol. 1, pp. 67-75, January 2000.
    • (2000) SIGKDD Explorations , vol.1 , pp. 67-75
    • Levin, I.1
  • 14
    • 0031383380 scopus 로고    scopus 로고
    • Self-similarity in world wide web traffic: Evidence and possible causes
    • M. E. Crovella and A. Bestavros, "Self-similarity in World Wide Web traffic: Evidence and Possible Causes," IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 835-846, 1997.
    • (1997) IEEE/ACM Transactions on Networking , vol.5 , Issue.6 , pp. 835-846
    • Crovella, M.E.1    Bestavros, A.2
  • 15
    • 0029323403 scopus 로고
    • Wide-area traffic: The failure of poisson modeling
    • V. Paxson and S. Floyd, "Wide-area traffic: The Failure of Poisson Modeling," IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226-244, 1995.
    • (1995) IEEE/ACM Transactions on Networking , vol.3 , Issue.3 , pp. 226-244
    • Paxson, V.1    Floyd, S.2
  • 19
    • 84860106300 scopus 로고    scopus 로고
    • UCI KDD Archive
    • http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (UCI KDD Archive).
  • 20
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • November
    • P. Baldi and K. Hornik, "Neural networks and Principal Component Analysis: Learning from Examples Without Local Minima," Neural Networks, vol. 2, pp. 53-58, November 1989.
    • (1989) Neural Networks , vol.2 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 21
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • February
    • M. A. Kramer, "Nonlinear Principal Component Analysis Using Autoassociative Neural Networks," AIChE Journal, vol. 37, pp. 233-243, February 1991.
    • (1991) AIChE Journal , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 23
    • 84860106301 scopus 로고    scopus 로고
    • http://www.salford-systems.com.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.