-
1
-
-
0003572901
-
-
[AH], Springer-Verlag, New York
-
[AH] L. M. ADLEMAN and M.-D. HUANG, Primality Testing and Abelian Varieties over Finite Fields, Lecture Notes in Math. 1512, Springer-Verlag, New York, 1992.
-
(1992)
Primality Testing and Abelian Varieties over Finite Fields, Lecture Notes in Math
, vol.1512
-
-
Adleman, L.M.1
Huang, M.-D.2
-
2
-
-
0001671902
-
On distinguishing prime numbers from composite numbers
-
[APR]
-
[APR] L. M. ADLEMAN, C. POMERANCE, and R. S. RUMELY, On distinguishing prime numbers from composite numbers, Ann. of Math. 117 (1983), 173-206.
-
(1983)
Ann. of Math.
, vol.117
, pp. 173-206
-
-
Adleman, L.M.1
Pomerance, C.2
Rumely, R.S.3
-
3
-
-
15944413051
-
Primality and identity testing via Chinese remaindering
-
[AB]
-
[AB] M. AGRAWAL and S. BISWAS, Primality and identity testing via Chinese remaindering, Journal of the ACM 50 (2003), 429-443.
-
(2003)
Journal of the ACM
, vol.50
, pp. 429-443
-
-
Agrawal, M.1
Biswas, S.2
-
4
-
-
0012527140
-
-
[AKS], preprint, August
-
[AKS] M. AGRAWAL, N. KAYAL, and N. SAXENA, PRIMES is in P, preprint (http://www.cse.iitk.ac.in/news/primality.ps), August 2002.
-
(2002)
PRIMES Is in P
-
-
Agrawal, M.1
Kayal, N.2
Saxena, N.3
-
7
-
-
13544252838
-
The Brun-Titchmarsh Theorem on average
-
[BH], Analytic Number Theory, Volume I (Allerton Park, IL, 1995), Birkhäuser Boston, Boston, MA
-
[BH] R. C. BAKER and G. HARMAN, The Brun-Titchmarsh Theorem on average, in Analytic Number Theory, Volume I (Allerton Park, IL, 1995), Progr. Math. 138, 39-103, Birkhäuser Boston, Boston, MA, 1996.
-
(1996)
Progr. Math.
, vol.138
, pp. 39-103
-
-
Baker, R.C.1
Harman, G.2
-
8
-
-
15944419391
-
Primality testing
-
[BP], IIT Kanpur
-
[BP] R. BHATTACHARJEE and P. PANDEY, Primality testing, Technical report, IIT Kanpur, 2001; available at http://www.cse.iitk.ac.in/research/btp2001/ primality.html.
-
(2001)
Technical Report
-
-
Bhattacharjee, R.1
Pandey, P.2
-
9
-
-
84966219578
-
Note on a number theory function
-
[Car]
-
[Car] R. D. CARMICHAEL, Note on a number theory function, Bull. Amer. Math. Soc. 16 (1910), 232-238.
-
(1910)
Bull. Amer. Math. Soc.
, vol.16
, pp. 232-238
-
-
Carmichael, R.D.1
-
10
-
-
0013506173
-
Théorème de Brun-Titchmarsh; application au théorème de Fermat
-
[Fou]
-
[Fou] E. FOUVRY, Théorème de Brun-Titchmarsh; application au théorème de Fermat, Invent. Math. 79 (1985), 383-407.
-
(1985)
Invent. Math.
, vol.79
, pp. 383-407
-
-
Fouvry, E.1
-
12
-
-
0000521573
-
A remark on Artin's conjecture
-
[GM]
-
[GM] R. GUPTA and M. RAM MURTY, A remark on Artin's conjecture, Invent. Math. 78 (1984), 127-130.
-
(1984)
Invent. Math.
, vol.78
, pp. 127-130
-
-
Gupta, R.1
Ram Murty, M.2
-
13
-
-
0040755797
-
The euclidian algorithm for S-integers
-
[GMM], Number Theory (Montreal, Que., 1985)
-
[GMM] R. GUPTA, V. KUMAR MURTY, and M. RAM MURTY, The Euclidian algorithm for S-integers, Number Theory (Montreal, Que., 1985), CMS Conf. Proc. 7 (1987), 189-202.
-
(1987)
CMS Conf. Proc.
, vol.7
, pp. 189-202
-
-
Gupta, R.1
Kumar Murty, V.2
Ram Murty, M.3
-
14
-
-
84971137261
-
On the number of primes p for which p + a has a large prime factor
-
[Gol]
-
[Gol] M. GOLDFELD, On the number of primes p for which p + a has a large prime factor, Mathematika 16 (1969), 23-27.
-
(1969)
Mathematika
, vol.16
, pp. 23-27
-
-
Goldfeld, M.1
-
15
-
-
0009117709
-
Artin's conjecture for primitive roots
-
[HB]
-
[HB] D. R. HEATH-BROWN, Artin's conjecture for primitive roots, Quart. J. Math. Oxford 37 (1986), 27-38.
-
(1986)
Quart. J. Math. Oxford
, vol.37
, pp. 27-38
-
-
Heath-Brown, D.R.1
-
16
-
-
85039390522
-
Towards a deterministic polynomial-time test
-
[KS], IIT Kanpur
-
[KS] N. KAYAL and N. SAXENA, Towards a deterministic polynomial-time test, Technical report, IIT Kanpur, 2002; available at http://www.cse.iitk.ac. in/ research/btp2002/primality.html.
-
(2002)
Technical Report
-
-
Kayal, N.1
Saxena, N.2
-
17
-
-
85039393380
-
-
[KSS], Private communication, August
-
[KSS] A. KALAI, A. SAHAI, and M. SUDAN, Notes on primality test and analysis of AKS, Private communication, August 2002.
-
(2002)
Notes on Primality Test and Analysis of AKS
-
-
Kalai, A.1
Sahai, A.2
Sudan, M.3
-
18
-
-
0003947113
-
-
[Lee], MIT Press, Cambridge, MA
-
[Lee] J. V. LEEUWEN (ed.), Handbook of Theoretical Computer Science, Volume A, MIT Press, Cambridge, MA, 1990.
-
(1990)
Handbook of Theoretical Computer Science
, vol.A
-
-
Leeuwen, J.V.1
-
19
-
-
85039404541
-
-
[Len], unpublished #aks for an exposition of Lenstra's argument, August
-
[Len] H. W. LENSTRA, JR., Primality testing with cyclotomic rings, unpublished (see http://cr.yp.to/papers.html#aks for an exposition of Lenstra's argument), August 2002.
-
(2002)
Primality Testing with Cyclotomic Rings
-
-
Lenstra Jr., H.W.1
-
22
-
-
85039395668
-
-
[LP2], unpublished, March
-
[LP2] _, Remarks on Agrawal's conjecture, unpublished (http://www.aimath.org/ WWN/primesinp/articles/html/50a/), March 2003.
-
(2003)
Remarks on Agrawal's Conjecture
-
-
-
24
-
-
0017217375
-
Riemann's hypothesis and tests for primality
-
[Mil]
-
[Mil] G. L. MILLER, Riemann's hypothesis and tests for primality, J. Comput. Sys. Sci. 13 (1976), 300-317.
-
(1976)
J. Comput. Sys. Sci.
, vol.13
, pp. 300-317
-
-
Miller, G.L.1
-
25
-
-
0039193658
-
On Chebyshev-type inequalities for primes
-
[Nai]
-
[Nai] M. NAIR, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982), 126-129.
-
(1982)
Amer. Math. Monthly
, vol.89
, pp. 126-129
-
-
Nair, M.1
-
26
-
-
0011521703
-
Every prime has a succinct certificate
-
[Pra]
-
[Pra] V. PRATT, Every prime has a succinct certificate, SIAM Journal on Computing 4 (1975), 214-220.
-
(1975)
SIAM Journal on Computing
, vol.4
, pp. 214-220
-
-
Pratt, V.1
-
27
-
-
33845432604
-
Probabilistic algorithm for testing primality
-
[Rab]
-
[Rab] M. O. RABIN, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), 128-138.
-
(1980)
J. Number Theory
, vol.12
, pp. 128-138
-
-
Rabin, M.O.1
|