-
3
-
-
3743103517
-
-
(a) Kliner, D. A. V.; Alfano, J. C.; Barbara, P. F. J. Chem. Phys. 1993, 98, 5375.
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 5375
-
-
Kliner, D.A.V.1
Alfano, J.C.2
Barbara, P.F.3
-
4
-
-
34047270526
-
-
(b) Sension, R. J.; Repinec, S. T.; Szarka, A. Z.; Hochstrasser, R. M. J. Chem. Phys. 1993, 98, 6291.
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 6291
-
-
Sension, R.J.1
Repinec, S.T.2
Szarka, A.Z.3
Hochstrasser, R.M.4
-
6
-
-
33751391282
-
-
(d) Schwartz, B. J.; Peteanu, L. A.; Harris, C. B. J. Phys. Chem. 1992, 96, 3591.
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 3591
-
-
Schwartz, B.J.1
Peteanu, L.A.2
Harris, C.B.3
-
7
-
-
33751384971
-
-
(e) Schoenlein, R. W.; Peteanu, L. A.; Wang, Q.; Mathies, R. A.; Shank, C. V. J. Phys. Chem. 1993, 97, 12087.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 12087
-
-
Schoenlein, R.W.1
Peteanu, L.A.2
Wang, Q.3
Mathies, R.A.4
Shank, C.V.5
-
8
-
-
0000487428
-
-
(f) Laermer, F.; Elsaesser, T.; Kaiser, W. Chem. Phys. Lett. 1988, 148, 119.
-
(1988)
Chem. Phys. Lett.
, vol.148
, pp. 119
-
-
Laermer, F.1
Elsaesser, T.2
Kaiser, W.3
-
9
-
-
0000214941
-
-
(g) Lenderink, E.; Duppen, K.; Wiersma, D. A. Chem. Phys. Lett. 1993, 211, 503.
-
(1993)
Chem. Phys. Lett.
, vol.211
, pp. 503
-
-
Lenderink, E.1
Duppen, K.2
Wiersma, D.A.3
-
10
-
-
0001446754
-
-
(h) Sakata, Y.; Tsue, H.; Oneil, M. P.; Wiederrecht, G. P.; Wasielewski, M. R. J. Am. Chem. Soc. 1994, 116, 6904.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 6904
-
-
Sakata, Y.1
Tsue, H.2
Oneil, M.P.3
Wiederrecht, G.P.4
Wasielewski, M.R.5
-
11
-
-
0001133694
-
-
(a) Braun, W.; Rajbenbaeh, L.; Eirich, F. R. J. Phys. Chem. 1962, 66, 1591.
-
(1962)
J. Phys. Chem.
, vol.66
, pp. 1591
-
-
Braun, W.1
Rajbenbaeh, L.2
Eirich, F.R.3
-
12
-
-
0010295178
-
-
(b) Kaptein, R.; Brokken-Zijp, J.; de Kanter, F. J. J. J. Am. Chem. Soc 1972, 94, 6280.
-
(1972)
J. Am. Chem. Soc
, vol.94
, pp. 6280
-
-
Kaptein, R.1
Brokken-Zijp, J.2
De Kanter, F.J.J.3
-
16
-
-
15844379781
-
-
See: (a) Barnett, J. R.; Hopkins, A. S.; Ledwith, A. J. Chem. Soc. Perkin Trans. 2 1973, 80. (b) Deronzier, A.; Esposito, F. Nouv. J. Chem. 1983, 7, 15. (c) Jones, G., II; Zisk, M. B. J. Org. Chem. 1986, 51, 947. (d) Mandler, D.; Willner, I. J. Chem. Soc. Perkin Trans. 2 1988, 997.
-
(1973)
J. Chem. Soc. Perkin Trans. 2
, vol.80
-
-
Barnett, J.R.1
Hopkins, A.S.2
Ledwith, A.3
-
17
-
-
0041920267
-
-
See: (a) Barnett, J. R.; Hopkins, A. S.; Ledwith, A. J. Chem. Soc. Perkin Trans. 2 1973, 80. (b) Deronzier, A.; Esposito, F. Nouv. J. Chem. 1983, 7, 15. (c) Jones, G., II; Zisk, M. B. J. Org. Chem. 1986, 51, 947. (d) Mandler, D.; Willner, I. J. Chem. Soc. Perkin Trans. 2 1988, 997.
-
(1983)
Nouv. J. Chem.
, vol.7
, pp. 15
-
-
Deronzier, A.1
Esposito, F.2
-
18
-
-
0010879009
-
-
See: (a) Barnett, J. R.; Hopkins, A. S.; Ledwith, A. J. Chem. Soc. Perkin Trans. 2 1973, 80. (b) Deronzier, A.; Esposito, F. Nouv. J. Chem. 1983, 7, 15. (c) Jones, G., II; Zisk, M. B. J. Org. Chem. 1986, 51, 947. (d) Mandler, D.; Willner, I. J. Chem. Soc. Perkin Trans. 2 1988, 997.
-
(1986)
J. Org. Chem.
, vol.51
, pp. 947
-
-
Jones II, G.1
Zisk, M.B.2
-
19
-
-
37049066989
-
-
See: (a) Barnett, J. R.; Hopkins, A. S.; Ledwith, A. J. Chem. Soc. Perkin Trans. 2 1973, 80. (b) Deronzier, A.; Esposito, F. Nouv. J. Chem. 1983, 7, 15. (c) Jones, G., II; Zisk, M. B. J. Org. Chem. 1986, 51, 947. (d) Mandler, D.; Willner, I. J. Chem. Soc. Perkin Trans. 2 1988, 997.
-
(1988)
J. Chem. Soc. Perkin Trans. 2
, pp. 997
-
-
Mandler, D.1
Willner, I.2
-
20
-
-
15844365402
-
-
note
-
CC) on the picosecond time scale cannot be readily extracted. For a discussion of this problem in the context of peroxide decomposition, see ref 3c.
-
-
-
-
21
-
-
0001218809
-
-
Pacansky, J.; Brown, D. W. J. Phys. Chem. 1983, 87, 1553. See also: Sheldon, R. A.; Kochi, J. K. J. Am. Chem. Soc. 1970, 92, 5175.
-
(1983)
J. Phys. Chem.
, vol.87
, pp. 1553
-
-
Pacansky, J.1
Brown, D.W.2
-
22
-
-
0347793399
-
-
Pacansky, J.; Brown, D. W. J. Phys. Chem. 1983, 87, 1553. See also: Sheldon, R. A.; Kochi, J. K. J. Am. Chem. Soc. 1970, 92, 5175.
-
(1970)
J. Am. Chem. Soc.
, vol.92
, pp. 5175
-
-
Sheldon, R.A.1
Kochi, J.K.2
-
23
-
-
15844367551
-
-
note
-
9
-
-
-
-
24
-
-
33751553914
-
-
(a) Ojima, S.; Miyasaka, H.; Mataga, N. J. Phys. Chem. 1990, 94, 4147.
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 4147
-
-
Ojima, S.1
Miyasaka, H.2
Mataga, N.3
-
25
-
-
0028404830
-
-
(b) Wynne, K.; Galli, C.; Hochstrasser, R. M. J. Chem. Phys. 1994, 100, 4797.
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 4797
-
-
Wynne, K.1
Galli, C.2
Hochstrasser, R.M.3
-
26
-
-
0000199048
-
-
See also: (c) Hilinski, E. F.; Masnovi, J. M.; Amatore, C.; Kochi, J. K.; Rentzepis, P. M. J. Am. Chem. Soc. 1983, 105, 6167. (d) Hilinski, E. F.; Masnovi, J. M.; Kochi, J. K.; Rentzepis, P. M. J. Am. Chem. Soc. 1984, 106, 8071.
-
(1983)
J. Am. Chem. Soc.
, vol.105
, pp. 6167
-
-
Hilinski, E.F.1
Masnovi, J.M.2
Amatore, C.3
Kochi, J.K.4
Rentzepis, P.M.5
-
27
-
-
33845470810
-
-
See also: (c) Hilinski, E. F.; Masnovi, J. M.; Amatore, C.; Kochi, J. K.; Rentzepis, P. M. J. Am. Chem. Soc. 1983, 105, 6167. (d) Hilinski, E. F.; Masnovi, J. M.; Kochi, J. K.; Rentzepis, P. M. J. Am. Chem. Soc. 1984, 106, 8071.
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 8071
-
-
Hilinski, E.F.1
Masnovi, J.M.2
Kochi, J.K.3
Rentzepis, P.M.4
-
31
-
-
15844386658
-
-
note
-
The laser spectrometer consists of a Ti:sapphire oscillator and two amplifiers. The oscillator is pumped by an argon ion laser to generate 110-fs pulses tunable between 720 and 920 nm. These pulses are amplified sequentially by a regenerative amplifier and a linear (multipass) amplifier, both of which are pumped by the frequency-doubled output of a (10 Hz) Q-switched Nd:YAG laser. The laser system produces 230-fs pulses with energies up to 10 mJ which are frequency-doubled (360-460 nm) for excitation.
-
-
-
-
34
-
-
0000450407
-
-
(b) Ebbesen, T. W.; Manring, L. E.; Peters, K. S. J. Am. Chem. Soc. 1984, 106, 7400.
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 7400
-
-
Ebbesen, T.W.1
Manring, L.E.2
Peters, K.S.3
-
41
-
-
0001198357
-
-
(a) Johnston, L. J.; Lougnot, D. L.; Wintgens, V.; Scaiano, J. C. J. Am. Chem. Soc. 1988, 110, 518.
-
(1988)
J. Am. Chem. Soc.
, vol.110
, pp. 518
-
-
Johnston, L.J.1
Lougnot, D.L.2
Wintgens, V.3
Scaiano, J.C.4
-
43
-
-
15844405323
-
-
note
-
-1. Since the experimental spectrum in Figure 1 is unchanged over a period of more than 50 ps, correction for group velocity dispersion is unnecessary.
-
-
-
-
44
-
-
0001565451
-
-
(b) Hayon, E.; Ibata, T.; Lichtin, N. N., Simic, M. J. Phys. Chem. 1972, 76, 2072.
-
(1972)
J. Phys. Chem.
, vol.76
, pp. 2072
-
-
Hayon, E.1
Ibata, T.2
Lichtin, N.N.3
Simic, M.4
-
45
-
-
15844383909
-
-
note
-
15b
-
-
-
-
46
-
-
0001462911
-
-
̇) is strongly blue-shifted away from the absorption band of the ketyl radical. See: Itoh, M.; Naeakura, S. Bull. Chem. Soc. Jpn. 1966, 39, 369.
-
(1966)
Bull. Chem. Soc. Jpn.
, vol.39
, pp. 369
-
-
Itoh, M.1
Naeakura, S.2
-
47
-
-
15844390141
-
-
The transient absorbance of reduced methylviologen is simulated simply as the integral over time of the laser profile
-
(a) The transient absorbance of reduced methylviologen is simulated simply as the integral over time of the laser profile.
-
-
-
-
48
-
-
15844367550
-
-
note
-
15b
-
-
-
-
49
-
-
0008761906
-
-
(c) The kinetic trace of the ketyl radical in Figure 2 is displaced by 0.4 ps to accommodate the difference in the group velocity dispersion of the 530-nm monitoring wavelength relative to that at 605 nm. [Note that the later rise of the 530-nm absorbance is opposite to mat based on the consideration of group velocity dispersion and thus cannot be due to an instrumental artifact ("chirp"). See: Sharma, D. K.; Yip, R. W.; Williams, D. F.; Sugamori, S. E.; Bradley, L. L. T. Chem. Phys. Lett. 1976, 41, 460. For an example of chirp-induced spectral distortion, see: Miyasaka, H.; Ojima, S.; Mataga, N. J. Phys. Chem. 1989, 93, 3380. Yip, R. W ; Korppi-Tommola, J. Rev. Chem. Intermed. 1985, 6, 33.]
-
(1976)
Chem. Phys. Lett.
, vol.41
, pp. 460
-
-
Sharma, D.K.1
Yip, R.W.2
Williams, D.F.3
Sugamori, S.E.4
Bradley, L.L.T.5
-
50
-
-
0001028283
-
-
(c) The kinetic trace of the ketyl radical in Figure 2 is displaced by 0.4 ps to accommodate the difference in the group velocity dispersion of the 530-nm monitoring wavelength relative to that at 605 nm. [Note that the later rise of the 530-nm absorbance is opposite to mat based on the consideration of group velocity dispersion and thus cannot be due to an instrumental artifact ("chirp"). See: Sharma, D. K.; Yip, R. W.; Williams, D. F.; Sugamori, S. E.; Bradley, L. L. T. Chem. Phys. Lett. 1976, 41, 460. For an example of chirp-induced spectral distortion, see: Miyasaka, H.; Ojima, S.; Mataga, N. J. Phys. Chem. 1989, 93, 3380. Yip, R. W ; Korppi-Tommola, J. Rev. Chem. Intermed. 1985, 6, 33.]
-
(1989)
J. Phys. Chem.
, vol.93
, pp. 3380
-
-
Miyasaka, H.1
Ojima, S.2
Mataga, N.3
-
51
-
-
84965969972
-
-
(c) The kinetic trace of the ketyl radical in Figure 2 is displaced by 0.4 ps to accommodate the difference in the group velocity dispersion of the 530-nm monitoring wavelength relative to that at 605 nm. [Note that the later rise of the 530-nm absorbance is opposite to mat based on the consideration of group velocity dispersion and thus cannot be due to an instrumental artifact ("chirp"). See: Sharma, D. K.; Yip, R. W.; Williams, D. F.; Sugamori, S. E.; Bradley, L. L. T. Chem. Phys. Lett. 1976, 41, 460. For an example of chirp-induced spectral distortion, see: Miyasaka, H.; Ojima, S.; Mataga, N. J. Phys. Chem. 1989, 93, 3380. Yip, R. W ; Korppi-Tommola, J. Rev. Chem. Intermed. 1985, 6, 33.]
-
(1985)
Rev. Chem. Intermed.
, vol.6
, pp. 33
-
-
Yip, R.W.1
Korppi-Tommola, J.2
-
52
-
-
84989699766
-
-
̇ is obtained by nanosecond laser photolysis using benzophenone triplet as actinometer. See; Hurley, J. K.; Sinai, N.; Linshitz, H. Photochem. Photobiol. 1983, 38, 9. The escape of the radicals out of the solvent cage is not included in the femtosecond kinetics, since it occurs on much slower time scales. See: Scott, T. W.; Liu, S. N. J. Phys. Chem. 1989, 93, 1393.
-
(1983)
Photochem. Photobiol.
, vol.38
, pp. 9
-
-
Hurley, J.K.1
Sinai, N.2
Linshitz, H.3
-
53
-
-
0000652281
-
-
̇ is obtained by nanosecond laser photolysis using benzophenone triplet as actinometer. See; Hurley, J. K.; Sinai, N.; Linshitz, H. Photochem. Photobiol. 1983, 38, 9. The escape of the radicals out of the solvent cage is not included in the femtosecond kinetics, since it occurs on much slower time scales. See: Scott, T. W.; Liu, S. N. J. Phys. Chem. 1989, 93, 1393.
-
(1989)
J. Phys. Chem.
, vol.93
, pp. 1393
-
-
Scott, T.W.1
Liu, S.N.2
-
54
-
-
15844401874
-
-
note
-
CC was directly obtained from the rise of the ketyl radical (see Figure 2), since back electron transfer is negligible as described in ref 17.
-
-
-
-
55
-
-
15844388636
-
-
note
-
3c on the picosecond time scale.
-
-
-
-
56
-
-
15844365399
-
-
note
-
CT < 360 nm and thus could not be excited with the Ti:sapphire laser system (see footnote 10).
-
-
-
-
57
-
-
0000950074
-
-
21a and ease of oxidation in soluuon. See: (a) Baumann, H.; Merckel, C.; Timpe, H -J.; Graness, A., Klemschmidt, J.; Gould, I. R.; Turro, N. J. Chem. Phys. Lett. 1984, 103, 497.
-
(1984)
J. Chem. Phys. Lett.
, vol.103
, pp. 497
-
-
Baumann, H.1
Merckel, C.2
Timpe, H.J.3
Graness, A.4
Klemschmidt, J.5
Gould, I.R.6
Turro, N.7
-
64
-
-
15844374677
-
-
note
-
23b
-
-
-
-
65
-
-
27944471615
-
-
and references therein
-
(b) Asahi, T.; Ohkohchi, M.; Mataga, N. J. Phys. Chem. 1993, 97, 13132 and references therein.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 13132
-
-
Asahi, T.1
Ohkohchi, M.2
Mataga, N.3
|