-
1
-
-
0001620222
-
-
P.R. Hammar, B.R. Bennett, M.J. Yang, and M. Johnson, Phys. Rev. Lett. 83, 203 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 203
-
-
Hammar, P.R.1
Bennett, B.R.2
Yang, M.J.3
Johnson, M.4
-
3
-
-
0032573499
-
-
G. Prinz, Science 282, 1660 (1998);
-
(1998)
Science
, vol.282
, pp. 1660
-
-
Prinz, G.1
-
4
-
-
0033576573
-
-
Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D.D. Awschalom, Nature (London) 402, 790 (1999);
-
(1999)
Nature (London)
, vol.402
, pp. 790
-
-
Ohno, Y.1
Young, D.K.2
Beschoten, B.3
Matsukura, F.4
Ohno, H.5
Awschalom, D.D.6
-
5
-
-
0034635396
-
-
T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
-
(2000)
Science
, vol.287
, pp. 1019
-
-
Dietl, T.1
Ohno, H.2
Matsukura, F.3
Cibert, J.4
Ferrand, D.5
-
6
-
-
0032560172
-
-
J.H. Park, E. Vescovo, H.J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature (London) 392, 794 (1998).
-
(1998)
Nature (London)
, vol.392
, pp. 794
-
-
Park, J.H.1
Vescovo, E.2
Kim, H.J.3
Kwon, C.4
Ramesh, R.5
Venkatesan, T.6
-
7
-
-
34547626151
-
-
R.A. De Groot, F.M. Mueller, P.G. Van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 2024
-
-
De Groot, R.A.1
Mueller, F.M.2
Van Engen, P.G.3
Buschow, K.H.J.4
-
9
-
-
0000514038
-
-
I. Galanakis, S. Ostanin, M. Alouani, H. Dreyssé, and J.M. Wills, Phys. Rev. B 61, 4093 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 4093
-
-
Galanakis, I.1
Ostanin, S.2
Alouani, M.3
Dreyssé, H.4
Wills, J.M.5
-
10
-
-
0035110960
-
-
A. Deb, M. Itou, Y. Sakurai, N. Hiraoka, and N. Sakai, Phys. Rev. B 63, 064409 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 64409
-
-
Deb, A.1
Itou, M.2
Sakurai, Y.3
Hiraoka, N.4
Sakai, N.5
-
13
-
-
0013462666
-
-
Spring Meeting
-
M. P. Raphael, S. F. Cheng, B. N. Das, B. Ravel, B. Nadgorny, G. Trotter, E. E. Carpenter, and V. G. Harris, MRS Proceedings, Spring Meeting, 2001.
-
(2001)
MRS Proceedings
-
-
Raphael, M.P.1
Cheng, S.F.2
Das, B.N.3
Ravel, B.4
Nadgorny, B.5
Trotter, G.6
Carpenter, E.E.7
Harris, V.G.8
-
15
-
-
36149031856
-
-
S. Fujii, S. Sugimura, S. Ishida, and S. Asano, J. Phys.: Condens. Matter 2, 8583 (1990).
-
(1990)
J. Phys.: Condens. Matter
, vol.2
, pp. 8583
-
-
Fujii, S.1
Sugimura, S.2
Ishida, S.3
Asano, S.4
-
16
-
-
0000837368
-
-
S. Ishida, S. Fujii, S. Kashiwagi, and S. Asano, J. Phys. Soc. Jpn. 654, 2152 (1995).
-
(1995)
J. Phys. Soc. Jpn.
, vol.654
, pp. 2152
-
-
Ishida, S.1
Fujii, S.2
Kashiwagi, S.3
Asano, S.4
-
20
-
-
0035880947
-
-
A. Continenza, S. Picozzi, W.T. Geng, and A.J. Freeman, Phys. Rev. B 64, 085204 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 85204
-
-
Continenza, A.1
Picozzi, S.2
Geng, W.T.3
Freeman, A.J.4
-
23
-
-
0003891472
-
-
edited by G. T. Rado and H. Shul (Academic, New York
-
A. J. Freeman and R. E. Watson, in Magnetism, edited by G. T. Rado and H. Shul (Academic, New York, 1965), Vol. IIA;
-
(1965)
Magnetism
, vol.2 A
-
-
Freeman, A.J.1
Watson, R.E.2
-
26
-
-
35949018705
-
-
Phys. Rev. BE. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman, 24, 864 (1981), and references therein.
-
(1981)
Phys. Rev. B
, vol.24
, pp. 864
-
-
Wimmer, E.1
Krakauer, H.2
Weinert, M.3
Freeman, A.J.4
-
34
-
-
0000142434
-
-
R. Fiederling, M. Klein, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, Nature (London) 402, 787 (1999).
-
(1999)
Nature (London)
, vol.402
, pp. 787
-
-
Fiederling, R.1
Klein, M.2
Ossau, W.3
Schmidt, G.4
Waag, A.5
Molenkamp, L.W.6
-
36
-
-
0011130169
-
-
A.G. Gavriliuk, G.N. Stepanov, V.A. Sidorov, and S.M. Irkaev, J. Appl. Phys. 79, 2609 (1996).
-
(1996)
J. Appl. Phys.
, vol.79
, pp. 2609
-
-
Gavriliuk, A.G.1
Stepanov, G.N.2
Sidorov, V.A.3
Irkaev, S.M.4
-
37
-
-
85038907780
-
-
Although we included spin-orbit coupling in the calculations (see below), we do not show its effect on the band structure for the sake of simplicity in the presentation
-
Although we included spin-orbit coupling in the calculations (see below), we do not show its effect on the band structure for the sake of simplicity in the presentation.
-
-
-
-
38
-
-
85038960482
-
-
The accuracy in the position of (formula presented) with respect to the minority VBM has been checked by increasing the number of (formula presented) points and the (formula presented) value, in order to achieve a higher level of convergence. We found that the relative alignment is stable to within 0.02 eV
-
The accuracy in the position of (formula presented) with respect to the minority VBM has been checked by increasing the number of (formula presented) points and the (formula presented) value, in order to achieve a higher level of convergence. We found that the relative alignment is stable to within 0.02 eV.
-
-
-
-
39
-
-
85038965598
-
-
Our results concerning (formula presented) and the Fermi level position with respect to the minority VBM are consistent (within 0.3 eV at most) with previous LSDA calculations (Ref. 14) with the linearized muffin-tin orbital in the atomic sphere approximation (LMTO-ASA) method (at their calculated equilibrium lattice constants). The disagreement is certainly due to the different computational methods used and specifically to their use of the ASA, which is not very accurate in the case of appreciable asphericities in the charge density (as in these Heusler compounds)
-
Our results concerning (formula presented) and the Fermi level position with respect to the minority VBM are consistent (within 0.3 eV at most) with previous LSDA calculations (Ref. 14) with the linearized muffin-tin orbital in the atomic sphere approximation (LMTO-ASA) method (at their calculated equilibrium lattice constants). The disagreement is certainly due to the different computational methods used and specifically to their use of the ASA, which is not very accurate in the case of appreciable asphericities in the charge density (as in these Heusler compounds).
-
-
-
-
40
-
-
0035844611
-
-
It was recently argued [see
-
It was recently argued [see K. Capelle and G. Vignale, Phys. Rev. Lett. 86, 5546 (2001)] that spin density functional potentials are not unique functionals of the spin densities, so that our values could miss the contribution due to the discontinuity of the exchange-correlation potential, and so show a problem similar to the underestimation of the band-gap in semiconductors occurring in the original (i.e., not spin-resolved) DFT.
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 5546
-
-
Capelle, K.1
Vignale, G.2
-
41
-
-
0003181377
-
-
edited by H.R.J. Wjin, Landolt-Börnstein, New Series, Group III (Springer-Verlag, Berlin
-
P.J. Webster and K.R.A. Ziebeck, in Alloys and Compounds of d-Elements with Main Group Elements, Part 2, edited by H.R.J. Wjin, Landolt-Börnstein, New Series, Group III (Springer-Verlag, Berlin, 1988), Vol. 19, Part C, pp. 75-184.
-
(1988)
Alloys and Compounds of d-Elements with Main Group Elements, Part 2
, vol.19
, pp. 75-184
-
-
Webster, P.J.1
Ziebeck, K.R.A.2
-
42
-
-
0031651304
-
-
Y.M. Yarmoshenko, M.I. Katsnelson, E.I. Shreder, E.Z. Kurmaev, A. Slebarski, S. Plogmann, T. Schlatholter, J. Braun, and M. Neumann, Eur. Phys. J. B 2, 1 (1998);
-
(1998)
Eur. Phys. J. B
, vol.2
, pp. 1
-
-
Yarmoshenko, Y.M.1
Katsnelson, M.I.2
Shreder, E.I.3
Kurmaev, E.Z.4
Slebarski, A.5
Plogmann, S.6
Schlatholter, T.7
Braun, J.8
Neumann, M.9
-
43
-
-
0001342349
-
-
S. Plogmann, T. Schlatholter, J. Braun, M. Neumann, Y.M. Yarmoshenko, M.V. Yablonskikh, E.I. Shreder, E.Z. Kurmaev, A. Wrona, and A. Slebarski, Phys. Rev. B 60, 6428 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 6428
-
-
Plogmann, S.1
Schlatholter, T.2
Braun, J.3
Neumann, M.4
Yarmoshenko, Y.M.5
Yablonskikh, M.V.6
Shreder, E.I.7
Kurmaev, E.Z.8
Wrona, A.9
Slebarski, A.10
-
44
-
-
0000524261
-
-
It has been pointed out [see
-
It has been pointed out [see, M. Battocletti, H. Ebert, and H. Akai, Phys. Rev. B 53, 9776 (1996)] that care has to be taken when dealing with the calculation of hyperfine fields within GGA; in fact, due to a divergence inherent in the general expression of the exchange potential in the GGA as the radius approaches zero, the s gradient density in the nuclear region could take values well beyond the range for which the GGA parametrization has been optimized. It was therefore recommended to use a “finite nucleus model” within GGA.
-
(1996)
Phys. Rev. B
, vol.53
, pp. 9776
-
-
Battocletti, M.1
Ebert, H.2
Akai, H.3
-
45
-
-
0000703726
-
-
Phys. Rev. BIn our calculations and in most recent simulations [see, for example, Ref. 8 andP. Ravindran, A. Delin, P. James, B. Johansson, J.M. Willis, R. Ahuja, and O. Eriksson, 59, 15 680 (1998)] however, a “point nucleus model” was used, since the results for the hyperfine fields are in reasonable agreement with experiment.
-
(1998)
Phys. Rev. B
, vol.59
, pp. 15680
-
-
Ravindran, P.1
Delin, A.2
James, P.3
Johansson, B.4
Willis, J.M.5
Ahuja, R.6
Eriksson, O.7
-
47
-
-
0000107608
-
-
J.I. Lee, S.C. Hong, A.J. Freeman, and C.L. Fu, Phys. Rev. B 47, 810 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 810
-
-
Lee, J.I.1
Hong, S.C.2
Freeman, A.J.3
Fu, C.L.4
|