메뉴 건너뛰기




Volumn 6, Issue , 2004, Pages 5969-5974

Decision trees work better than feed-forward back-prop neural nets for a specific class of problems

Author keywords

Decision Trees; Feature Space; Neural Networks; Performance Evaluation

Indexed keywords

APPROXIMATORS; DECISION TREES; FEATURE SPACE; PERFORMANCE EVALUATION;

EID: 15744387802     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSMC.2004.1401150     Document Type: Conference Paper
Times cited : (10)

References (12)
  • 2
    • 15744406071 scopus 로고    scopus 로고
    • "weka", http://www.cs.waikato.ac.nz/ml/weka/
    • Weka
  • 4
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by Superpositions of a Sigmoidal Function", Mathematics of Control, Signals, and Systems, pp. 2:303-314, 1989.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik and M. Stinchcombe and H. White, "Multilayer Feedforward Networks are Universal Approximators", Neural Networks, pp. 2:359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.