메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 4774-4779

CEM algorithm for imprecise data. Application to flaw diagnosis using acoustic emission

Author keywords

Acoustic emission; CEM algorithm; Clustering; Flaw diagnosis; Imprecise data; Interval valued data; Mixture model; Uncertainty zone data

Indexed keywords

CEM ALGORITHMS; CLUSTERING; FLAW DIAGNOSIS; IMPRECISE DATA; INTERVAL-VALUED DATA; MIXTURE MODEL; UNCERTAINITY ZONE DATA;

EID: 15744385091     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSMC.2004.1401286     Document Type: Conference Paper
Times cited : (8)

References (14)
  • 1
    • 0042241647 scopus 로고    scopus 로고
    • Regression analysis for interval-valued data
    • H. Kiers, P. Groenen, J.-P. Rasson, and Scader M., editors, Data Analysis, Classification, and Related Methods, Namur, Belgium Springer Verlag, 11-14 July
    • L. Billard and E. Diday. Regression analysis for interval-valued data. In H. Kiers, P. Groenen, J.-P. Rasson, and Scader M., editors, Data Analysis, Classification, and Related Methods, Proc. IFCS'2000, Namur, Belgium. Springer Verlag, 11-14 July 2000.
    • (2000) Proc. IFCS'2000
    • Billard, L.1    Diday, E.2
  • 3
    • 0001626339 scopus 로고
    • A classification em algorithm for clustering and two stochastic versions
    • G. Celeux and G. Govaert. A classification em algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis, 14(3):315-332, 1992.
    • (1992) Computational Statistics and Data Analysis , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 4
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • G. Celeux and G. Govaert. Gaussian parsimonious clustering models. Pattern Recognition, 28(5):781-793, 1995.
    • (1995) Pattern Recognition , vol.28 , Issue.5 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 5
    • 0012393548 scopus 로고    scopus 로고
    • Dynamical clustering of interval data: Optimization of an adequacy criterion based on hausdorff distance
    • K. Jajuga, A. Sokolowski, and H. H. Bock, editors, Springer, Berlin, Germany
    • M. Chavent and Y. Lechevallier. Dynamical clustering of interval data: Optimization of an adequacy criterion based on hausdorff distance. In K. Jajuga, A. Sokolowski, and H. H. Bock, editors, Classification, Clustering and Data Analysis, pages 53-60. Springer, Berlin, Germany, 2002.
    • (2002) Classification, Clustering and Data Analysis , pp. 53-60
    • Chavent, M.1    Lechevallier, Y.2
  • 7
    • 0005900345 scopus 로고
    • Symbolic cluster analysis
    • O. Opitz, editor. Springer-Verlag, Heidelberg
    • E. Diday and M. P. Brito. Symbolic cluster analysis. In O. Opitz, editor, Conceptual and Numerical Analysis of Data, pages 45-84. Springer-Verlag, Heidelberg, 1989.
    • (1989) Conceptual and Numerical Analysis of Data , pp. 45-84
    • Diday, E.1    Brito, M.P.2
  • 9
    • 0346760234 scopus 로고    scopus 로고
    • An iteractive relocation algorithm for classifying symbolic data
    • O. Opitz and M. Schader, editors. W. Gaul, Springer, Berlin
    • A. D. Gordon. An iteractive relocation algorithm for classifying symbolic data. In O. Opitz and M. Schader, editors, Data Analysis: Scientific Modeling and Practical Application, pages 17-23. W. Gaul, Springer, Berlin, 2000.
    • (2000) Data Analysis: Scientific Modeling and Practical Application , pp. 17-23
    • Gordon, A.D.1
  • 11
    • 11244327915 scopus 로고    scopus 로고
    • Multi-layer perceptron on interval data
    • K. Jajuga, A. Sokolowski, and H. H. Bock, editors. Springer, Berlin, Germany
    • F. Rossi and B. Conan-Guez. Multi-layer perceptron on interval data. In K. Jajuga, A. Sokolowski, and H. H. Bock, editors, Classification, Clustering, and Data Analysis, pages 427-436. Springer, Berlin, Germany, 2002.
    • (2002) Classification, Clustering, and Data Analysis , pp. 427-436
    • Rossi, F.1    Conan-Guez, B.2
  • 12
    • 0346724786 scopus 로고    scopus 로고
    • Clustering of interval data based on city-block distances
    • R. M. C. R. De Souza and F. A. T. De Carvalho. Clustering of interval data based on city-block distances. Pattern Recognition Letters, 25(3):353-365, 2004.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.3 , pp. 353-365
    • De Souza, R.M.C.R.1    De Carvalho, F.A.T.2
  • 13
    • 0002643871 scopus 로고
    • Clustering criteria and multivariate normal mixture
    • march
    • M. J. Symons. Clustering criteria and multivariate normal mixture. Biometrics, 37:35-43, march 1981.
    • (1981) Biometrics , vol.37 , pp. 35-43
    • Symons, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.