메뉴 건너뛰기




Volumn 166, Issue 1, 2004, Pages 291-305

A uniformly accurate spline collocation method for a normalized flux

Author keywords

Difference scheme; Singular perturbation problem; Spline collocation method; Uniform convergence

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL METHODS; LINEAR EQUATIONS; PERTURBATION TECHNIQUES;

EID: 1542634759     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2003.09.021     Document Type: Article
Times cited : (15)

References (11)
  • 1
    • 0000799545 scopus 로고    scopus 로고
    • The computation of boundary flow with uniform accuracy with respect to a small parameter
    • Andreyev V.B. Savin I.A. The computation of boundary flow with uniform accuracy with respect to a small parameter Comput. Maths Math. Phys. 36 12 1996 1687-1692
    • (1996) Comput. Maths Math. Phys. , vol.36 , Issue.12 , pp. 1687-1692
    • Andreyev, V.B.1    Savin, I.A.2
  • 2
    • 0042508692 scopus 로고
    • Monotonicity and discretization error estimates
    • Axelsson O. Kolotilina L. Monotonicity and discretization error estimates SIAM J. Numer. Anal. 27 6 1990 1591-1611
    • (1990) SIAM J. Numer. Anal. , vol.27 , Issue.6 , pp. 1591-1611
    • Axelsson, O.1    Kolotilina, L.2
  • 3
    • 0012413845 scopus 로고
    • Discrete maximum principle for finite-difference operators
    • Ciarlet G.P. Discrete maximum principle for finite-difference operators Aequ. Math. 4 1970 338-352
    • (1970) Aequ. Math. , vol.4 , pp. 338-352
    • Ciarlet, G.P.1
  • 4
    • 0001200849 scopus 로고    scopus 로고
    • Stability and monotonicity properties of stiff quasilinear boundary problems
    • J. Lorenz, Stability and monotonicity properties of stiff quasilinear boundary problems, Zb. Rad. Prir. Mat. Fak. Univ. Novom Sadu Ser. Mat. 12, 151-176.
    • Zb. Rad. Prir. Mat. Fak. Univ. Novom Sadu Ser. Mat. , vol.12 , pp. 151-176
    • Lorenz, J.1
  • 6
    • 0346236041 scopus 로고
    • Approximation of solutions to singularly perturbed boundary value problems with corner boundary layers
    • Shishkin G.I. Approximation of solutions to singularly perturbed boundary value problems with corner boundary layers Dokl. Akad. Nauk SSSR 296 1987 39-43
    • (1987) Dokl. Akad. Nauk SSSR , vol.296 , pp. 39-43
    • Shishkin, G.I.1
  • 7
    • 84961479437 scopus 로고
    • Grid approximation of singularly perturbed parabolic equations with internal layers
    • Shishkin G.I. Grid approximation of singularly perturbed parabolic equations with internal layers Sov. J. Numer. Anal. Math. Modelling 3 1988 393-407
    • (1988) Sov. J. Numer. Anal. Math. Modelling , vol.3 , pp. 393-407
    • Shishkin, G.I.1
  • 8
    • 1542722488 scopus 로고    scopus 로고
    • private communications
    • M. Stynes, private communications.
    • Stynes, M.1
  • 9
    • 21844521577 scopus 로고
    • An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction-diffusion problem
    • Sun G. Stynes M. An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction-diffusion problem Numer Math. 70 1995 487-500
    • (1995) Numer Math. , vol.70 , pp. 487-500
    • Sun, G.1    Stynes, M.2
  • 10
    • 1542512741 scopus 로고    scopus 로고
    • Exponential function as boundary layer functions
    • Surla K. Exponential function as boundary layer functions Novi Sad J. Math. 28 1998 159-176
    • (1998) Novi Sad J. Math. , vol.28 , pp. 159-176
    • Surla, K.1
  • 11
    • 0001741172 scopus 로고
    • On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh
    • Vulanović R. On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh Univ. Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 13 1983 187-201
    • (1983) Univ. Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. , vol.13 , pp. 187-201
    • Vulanović, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.