-
1
-
-
0031154662
-
To treat or not to treat: The case of tuberculosis
-
Castillo-Chavez, C., Feng, Z.: To treat or not to treat: the case of tuberculosis. J. Math. Biol. 6, 629-656 (1997)
-
(1997)
J. Math. Biol.
, vol.6
, pp. 629-656
-
-
Castillo-Chavez, C.1
Feng, Z.2
-
2
-
-
0032526469
-
Analysis of a dengue disease transmission model
-
Esteva, L., Vargas, C.: Analysis of a dengue disease transmission model. Math. Biosci. 150, 131-151 (1998)
-
(1998)
Math. Biosci.
, vol.150
, pp. 131-151
-
-
Esteva, L.1
Vargas, C.2
-
3
-
-
0033089022
-
A model for dengue disease with variable human population
-
Esteva, L., Vargas, C.: A model for dengue disease with variable human population. J. Math. Biol. 38, 220-240 (1999)
-
(1999)
J. Math. Biol.
, vol.38
, pp. 220-240
-
-
Esteva, L.1
Vargas, C.2
-
4
-
-
0000302081
-
On the role of variable latent periods in mathematical models for tuberculosis
-
Feng, Z., Huang, W., Castillo-Chavez, C.: On the role of variable latent periods in mathematical models for tuberculosis. J. Dyn. Differential Equations 13, 425-451 (2001)
-
(2001)
J. Dyn. Differential Equations
, vol.13
, pp. 425-451
-
-
Feng, Z.1
Huang, W.2
Castillo-Chavez, C.3
-
5
-
-
84968495017
-
Uniformly persistent semidynamical systems
-
Fonda, A.: Uniformly persistent semidynamical systems. Proc. Amer. Math. Soc. 104, 111-116 (1988)
-
(1988)
Proc. Amer. Math. Soc.
, vol.104
, pp. 111-116
-
-
Fonda, A.1
-
6
-
-
0029012360
-
Four SEI endemic models with periodicity and separatrices
-
Gao, L.Q., Mena-Lorca, J., Hethcote, H.W.: Four SEI endemic models with periodicity and separatrices. Math. Biosci. 128, 157-184 (1995)
-
(1995)
Math. Biosci.
, vol.128
, pp. 157-184
-
-
Gao, L.Q.1
Mena-Lorca, J.2
Hethcote, H.W.3
-
7
-
-
0036466440
-
Stability and persistence in a compartment model of pulmonary tuberculosis
-
Gomes, M.C., Margheri, A., Rebelo, C.: Stability and persistence in a compartment model of pulmonary tuberculosis. Nonl. Anal. T.M.A., 48, 617-636 (2002)
-
(2002)
Nonl. Anal. T.M.A.
, vol.48
, pp. 617-636
-
-
Gomes, M.C.1
Margheri, A.2
Rebelo, C.3
-
9
-
-
0032812296
-
Global dynamics of a SEIR model with varying total population size
-
Li, M.Y., Graef, J.R., Wang, L., Karsai, J.: Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160, 191-213 (1999)
-
(1999)
Math. Biosci.
, vol.160
, pp. 191-213
-
-
Li, M.Y.1
Graef, J.R.2
Wang, L.3
Karsai, J.4
-
10
-
-
0028817626
-
Global stability for the SEIR model in epidemiology
-
Li, Y.M., Muldowney, J.S.: Global stability for the SEIR model in epidemiology. Math. Biosci. 125, 155-164 (1995)
-
(1995)
Math. Biosci.
, vol.125
, pp. 155-164
-
-
Li, Y.M.1
Muldowney, J.S.2
-
11
-
-
0030544879
-
A geometric approach to global-stability problems
-
Li, Y.M., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27, 1070-1083 (1996)
-
(1996)
SIAM J. Math. Anal.
, vol.27
, pp. 1070-1083
-
-
Li, Y.M.1
Muldowney, J.S.2
-
12
-
-
0023070210
-
Dynamical behavior of epidemiological models with nonlinear incidence rates
-
Liu, W-M., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biology 25, 359-380 (1987)
-
(1987)
J. Math. Biology
, vol.25
, pp. 359-380
-
-
Liu, W.-M.1
Hethcote, H.W.2
Levin, S.A.3
-
13
-
-
0039591930
-
Persistence under relaxed point-dissipativity (with application to an endemic model)
-
Thieme, H.R.: Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J. Math. Anal. 24, 407-435 (1993)
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 407-435
-
-
Thieme, H.R.1
-
14
-
-
0002231761
-
A brief survey of persistence in dynamical systems
-
Claremont, California, 1990, S. Busenberg and M. Martelli editors, Springer-Verlag Berlin Heidelberg
-
P. Waltman: A brief survey of persistence in dynamical systems, Proceedings of a Conference in honor of Kenneth Cooke, Claremont, California, 1990, S. Busenberg and M. Martelli editors, Springer-Verlag Berlin Heidelberg, 1991
-
(1991)
Proceedings of a Conference in Honor of Kenneth Cooke
-
-
Waltman, P.1
|