메뉴 건너뛰기




Volumn 166, Issue 1, 2004, Pages 153-166

On application of an alternating direction method to Hamilton-Jacobin-Bellman equations

Author keywords

Alternating direction method; Characteristic method; Finite difference method; Hamilton Jacobi Bellman equation; Optimal feedback control; Viscosity solution

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL METHODS; DIFFUSION; HAMILTONIANS; PERTURBATION TECHNIQUES; PROBLEM SOLVING;

EID: 1542529898     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2003.09.031     Document Type: Article
Times cited : (29)

References (14)
  • 2
    • 84968507121 scopus 로고
    • Some properties of viscosity solutions of Hamilton-Jacobi equations
    • Crandall M.G. Evans L.C. Lions P.L. Some properties of viscosity solutions of Hamilton-Jacobi equations Trans. Amer. Math. Soc. 282 2 1984 487-502
    • (1984) Trans. Amer. Math. Soc. , vol.282 , Issue.2 , pp. 487-502
    • Crandall, M.G.1    Evans, L.C.2    Lions, P.L.3
  • 3
    • 84967758647 scopus 로고
    • Viscosity solutions of Hamilton-Jacobi equations
    • Crandall M.G. Lions P.L. Viscosity solutions of Hamilton-Jacobi equations Trans. Amer. Math. Soc. 277 1 1983 1-42
    • (1983) Trans. Amer. Math. Soc. , vol.277 , Issue.1 , pp. 1-42
    • Crandall, M.G.1    Lions, P.L.2
  • 5
    • 0001742634 scopus 로고
    • A general formulation of alternating direction methods Part I. Parabolic and hyperbolic problems
    • Douglas J.Jr. Gunn J. A general formulation of alternating direction methods Part I. Parabolic and hyperbolic problems Numer. Math. 6 1964 428-453
    • (1964) Numer. Math. , vol.6 , pp. 428-453
    • Douglas Jr., J.1    Gunn, J.2
  • 6
    • 0347121979 scopus 로고    scopus 로고
    • Improved accuracy for locally one-dimensional methods for parabolic equations
    • Douglas J.Jr. Kim S. Improved accuracy for locally one-dimensional methods for parabolic equations Math. Models Methods Appl. Sci. 11 2001 1563-1579
    • (2001) Math. Models Methods Appl. Sci. , vol.11 , pp. 1563-1579
    • Douglas Jr., J.1    Kim, S.2
  • 7
    • 84984083796 scopus 로고
    • Numerical solution of two-dimensional heat flow problems
    • Douglas J.Jr. Peaceman D. Numerical solution of two-dimensional heat flow problems Amer. Inst. Chem. Eng. J. 1 1955 505-512
    • (1955) Amer. Inst. Chem. Eng. J. , vol.1 , pp. 505-512
    • Douglas Jr., J.1    Peaceman, D.2
  • 8
    • 0001235787 scopus 로고
    • Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures
    • Douglas J.Jr. Russell T.F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures SIAM J. Numer. Anal. 19 1982 871-885
    • (1982) SIAM J. Numer. Anal. , vol.19 , pp. 871-885
    • Douglas Jr., J.1    Russell, T.F.2
  • 9
    • 0034172421 scopus 로고    scopus 로고
    • Solving Hamilton-Jacobi-Bellman equations by a modified method of characteristics
    • Huang C.-S. Wang S. Teo K.L. Solving Hamilton-Jacobi-Bellman equations by a modified method of characteristics Nonlinear Anal. 40 2000 279-293
    • (2000) Nonlinear Anal. , vol.40 , pp. 279-293
    • Huang, C.-S.1    Wang, S.2    Teo, K.L.3
  • 11
    • 0001866020 scopus 로고
    • On a new principle of superposition for optimization problems
    • Maslov V.P. On a new principle of superposition for optimization problems Russian Math. Surveys 42 3 1987 43-84
    • (1987) Russian Math. Surveys , vol.42 , Issue.3 , pp. 43-84
    • Maslov, V.P.1
  • 12
    • 0002058827 scopus 로고
    • The numerical solution of parabolic and elliptic equations
    • Peaceman D. Rachford H. The numerical solution of parabolic and elliptic equations J. Soc. Indust. Appl. Math. 3 1955 28-41
    • (1955) J. Soc. Indust. Appl. Math. , vol.3 , pp. 28-41
    • Peaceman, D.1    Rachford, H.2
  • 13
    • 0033719001 scopus 로고    scopus 로고
    • An upwind finite difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations
    • Wang S. Gao F. Teo K.L. An upwind finite difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations IMA J. Math. Control Appl. 17 2000 169-178
    • (2000) IMA J. Math. Control Appl. , vol.17 , pp. 169-178
    • Wang, S.1    Gao, F.2    Teo, K.L.3
  • 14
    • 0042429194 scopus 로고    scopus 로고
    • Numerical solution of Hamilton-Jacobi-Bellman equations by an upwind finite volume method
    • Wang S. Jennings L.S. Teo K.L. Numerical solution of Hamilton-Jacobi-Bellman equations by an upwind finite volume method J. Global Optim. 27 2003 177-192
    • (2003) J. Global Optim. , vol.27 , pp. 177-192
    • Wang, S.1    Jennings, L.S.2    Teo, K.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.