-
1
-
-
3543144461
-
-
H. L. Störmer, Z. Schlesinger, A. Chang, D. C. Tsui, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 51, 126 (1983).
-
(1983)
Phys. Rev. Lett.
, vol.51
, pp. 126
-
-
Störmer, H.L.1
Schlesinger, Z.2
Chang, A.3
Tsui, D.C.4
Gossard, A.C.5
Wiegmann, W.6
-
2
-
-
33749521140
-
-
J.P. Eisenstein, H. L. Störmer, V. Narayanamurti, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 53, 2579 (1984).
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 2579
-
-
Eisenstein, J.P.1
Störmer, H.L.2
Narayanamurti, V.3
Gossard, A.C.4
Wiegmann, W.5
-
3
-
-
0043109718
-
-
B. Jusserand, D. Richards, H. Peric, and B. Etienne, Phys. Rev. Lett. 69, 848 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 848
-
-
Jusserand, B.1
Richards, D.2
Peric, H.3
Etienne, B.4
-
4
-
-
3543061059
-
-
P. D. Dresselhaus, C. M. A. Papavassiliou, R. G. Wheeler, and R. N. Sacks, Phys. Rev. Lett. 68, 106 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 106
-
-
Dresselhaus, P.D.1
Papavassiliou, C.M.A.2
Wheeler, R.G.3
Sacks, R.N.4
-
5
-
-
0030190148
-
-
C. Gauer, M. Hartung, A. Wixforth, J. P. Kotthaus, B. Brar, and H. Kroemer, Surf. Sci. 361/362, 472 (1996).
-
(1996)
Surf. Sci.
, vol.361/362
, pp. 472
-
-
Gauer, C.1
Hartung, M.2
Wixforth, A.3
Kotthaus, J.P.4
Brar, B.5
Kroemer, H.6
-
6
-
-
0030206803
-
-
M. Schultz, F. Heinrichs, U. Merkt, T. Colin, T. Skauli, and S. Løvold, Semicond. Sci. Technol. 11, 1168 (1996).
-
(1996)
Semicond. Sci. Technol.
, vol.11
, pp. 1168
-
-
Schultz, M.1
Heinrichs, F.2
Merkt, U.3
Colin, T.4
Skauli, T.5
Løvold, S.6
-
12
-
-
85037907795
-
-
For a review of early work, see U. Rössler, F. Malcher, and G. Lommer, in High Magnetic Fields in Semiconductor Physics, edited by G. Landwehr, Springer Series in Solid-State Sciences Vol. 87 (Springer-Verlag, Berlin, 1989), p. 376.
-
For a review of early work, see U. Rössler, F. Malcher, and G. Lommer, in High Magnetic Fields in Semiconductor Physics, edited by G. Landwehr, Springer Series in Solid-State Sciences Vol. 87 (Springer-Verlag, Berlin, 1989), p. 376.
-
-
-
-
15
-
-
0032472661
-
-
Phys. Rev. Lett.A. F. Morpurgo, J. P. Heida, T. M. Klapwijk, B. J. van Wees, and G. Borghs, 80, 1050 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 1050
-
-
Morpurgo, A.F.1
Heida, J.P.2
Klapwijk, T.M.3
van Wees, B.J.4
Borghs, G.5
-
16
-
-
0000281909
-
-
J. P. Lu, J. B. Yau, S. P. Shukla, M. Shayegan, L. Wissinger, U. Rössler, and R. Winkler, Phys. Rev. Lett. 81, 1282 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 1282
-
-
Lu, J.P.1
Yau, J.B.2
Shukla, S.P.3
Shayegan, M.4
Wissinger, L.5
Rössler, U.6
Winkler, R.7
-
17
-
-
84956131297
-
-
D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann, Europhys. Lett. 8, 179 (1989);
-
(1989)
Europhys. Lett.
, vol.8
, pp. 179
-
-
Weiss, D.1
von Klitzing, K.2
Ploog, K.3
Weimann, G.4
-
21
-
-
85037881268
-
-
The total density is deduced from the relation: (Formula presented) where (Formula presented) is the magnetic field at which the (Formula presented) quantum Hall effect resistivity minimum occurs.
-
The total density is deduced from the relation: (Formula presented) where (Formula presented) is the magnetic field at which the (Formula presented) quantum Hall effect resistivity minimum occurs.
-
-
-
-
25
-
-
0039368917
-
-
J. Menendez, A. Pinczuk, D. J. Werder, A. C. Gossard, and J. H. English, Phys. Rev. B 33, 8863 (1986).
-
(1986)
Phys. Rev. B
, vol.33
, pp. 8863
-
-
Menendez, J.1
Pinczuk, A.2
Werder, D.J.3
Gossard, A.C.4
English, J.H.5
-
27
-
-
0001174016
-
-
This is because the semiclassical trajectory of the ballistic carriers in real space under the influence of a perpendicular magnetic has the same shape as the constant energy contour in k space but is rotated by (Formula presented) with respect to the latter. Also, see G. Goldoni and A. Fasolino, Phys. Rev. B 44, 8369 (1991).
-
(1991)
Phys. Rev. B
, vol.44
, pp. 8369
-
-
Goldoni, G.1
Fasolino, A.2
-
29
-
-
0000843210
-
-
)], for the Fermi wave vector of our sample (Formula presented), spin-flip time can be (Formula presented) ps, comparable to our measured scattering time.
-
We emphasize that our measured (Formula presented) are of the order of impurity scattering times. Spin-flip scattering times are typically expected to be much longer. However, because of the very strong spin-orbit coupling and band mixing in GaAs 2D holes, spin-flip scattering, mediated by impurity scattering, can happen in ps time scale in our sample. Indeed, according to calculations by R. Ferreira and G. Bastard [ Phys. Rev. B 43, 9687 (1991)], for the Fermi wave vector of our sample (Formula presented), spin-flip time can be (Formula presented) ps, comparable to our measured scattering time.
-
(1991)
Phys. Rev. B
, vol.43
, pp. 9687
-
-
Ferreira, R.1
Bastard, G.2
|