메뉴 건너뛰기




Volumn 50, Issue 2, 2003, Pages 179-205

Lattice and order properties of the poset of regions in a hyperplane arrangement

Author keywords

Bounded lattice; Cayley lattice; Congruence normal; Congruence uniform; Coxeter group; Critical pair; Doubling; Hyperplane arrangement; Order dimension; Order quotient; Permutation lattice; Poset of regions; Semi distributive lattice; Simplicial; Subcritical pair

Indexed keywords


EID: 1542508681     PISSN: 00025240     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00012-003-1834-0     Document Type: Article
Times cited : (61)

References (24)
  • 1
    • 0042638007 scopus 로고    scopus 로고
    • Modular elements in the lattice L(A) when A is a real reflection arrangement
    • Selected papers in honor of Adriano Garsia
    • H. Barcelo and E. Ihrig, Modular elements in the lattice L(A) when A is a real reflection arrangement, Selected papers in honor of Adriano Garsia, Discrete Math. 193 (1998), 61-68.
    • (1998) Discrete Math. , vol.193 , pp. 61-68
    • Barcelo, H.1    Ihrig, E.2
  • 3
    • 0347368290 scopus 로고    scopus 로고
    • The lattice of permutations is bounded
    • N. Caspard, The lattice of permutations is bounded, Internat. J. Algebra Comput 10 (2000), 481-489.
    • (2000) Internat. J. Algebra Comput , vol.10 , pp. 481-489
    • Caspard, N.1
  • 5
    • 0141549792 scopus 로고    scopus 로고
    • Congruences in Ordered Sets
    • I. Chajda and V. Snášel, Congruences in Ordered Sets, Math. Bohem. 123 (1998), 95-100.
    • (1998) Math. Bohem. , vol.123 , pp. 95-100
    • Chajda, I.1    Snášel, V.2
  • 6
    • 51249184401 scopus 로고
    • Splitting lattices generate all lattices
    • A. Day, Splitting lattices generate all lattices, Algebra Universalis 7 (1977), 163-169.
    • (1977) Algebra Universalis , vol.7 , pp. 163-169
    • Day, A.1
  • 7
    • 0141438237 scopus 로고
    • Congruence normality: The characterization of the doubling class of convex sets
    • A. Day, Congruence normality: the characterization of the doubling class of convex sets, Algebra Universalis 31 (1994), 397-406.
    • (1994) Algebra Universalis , vol.31 , pp. 397-406
    • Day, A.1
  • 9
    • 84967712844 scopus 로고
    • n Dissected by Hyperplanes
    • n Dissected by Hyperplanes, Trans. Amer. Math. Soc. 283, (1984), 617-631.
    • (1984) Trans. Amer. Math. Soc. , vol.283 , pp. 617-631
    • Edelman, P.1
  • 10
    • 0000806823 scopus 로고
    • The theory of convex geometries
    • P. Edelman and R. Jamison, The theory of convex geometries, Geom. Dedicata 19 (1985), 247-270.
    • (1985) Geom. Dedicata , vol.19 , pp. 247-270
    • Edelman, P.1    Jamison, R.2
  • 11
    • 0141773092 scopus 로고
    • The order dimension of multinomial lattices
    • S. Flath, The order dimension of multinomial lattices, Order 10 (1993), 201-219.
    • (1993) Order , vol.10 , pp. 201-219
    • Flath, S.1
  • 16
    • 21844519365 scopus 로고
    • Combinatorics of Inductively Factored Arrangements
    • M. Jambu and L. Paris, Combinatorics of Inductively Factored Arrangements, European J. Combin. 16 (1995), 267-292.
    • (1995) European J. Combin. , vol.16 , pp. 267-292
    • Jambu, M.1    Paris, L.2
  • 17
    • 0347121418 scopus 로고
    • Sur les Treillis de Coxeter Finis
    • G. Le Conte de Poly-Barbut, Sur les Treillis de Coxeter Finis (French), Math. Inf. Sci. hum. 32, 125 (1994), 41-57.
    • (1994) Math. Inf. Sci. Hum. , vol.32 , Issue.125 , pp. 41-57
    • Le Conte de Poly-Barbut, G.1
  • 18
    • 0001843738 scopus 로고
    • Equational bases and nonmodular lattice varieties
    • R. McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43.
    • (1972) Trans. Amer. Math. Soc. , vol.174 , pp. 1-43
    • McKenzie, R.1
  • 20
    • 0000081099 scopus 로고
    • The Rank of a Distributive Lattice
    • I. Rabinovitch and I. Rival, The Rank of a Distributive Lattice, Discrete Math. 25 (1979), 275-279.
    • (1979) Discrete Math. , vol.25 , pp. 275-279
    • Rabinovitch, I.1    Rival, I.2
  • 21
    • 0141465264 scopus 로고    scopus 로고
    • Order dimension, strong Bruhat order and lattice properties for posets
    • N. Reading, Order dimension, strong Bruhat order and lattice properties for posets, Order 19 (2002), 73-100.
    • (2002) Order , vol.19 , pp. 73-100
    • Reading, N.1
  • 23
    • 0004034019 scopus 로고
    • Combinatorics and Partially Ordered Sets: Dimension Theory
    • The Johns Hopkins Univ. Press
    • W. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, Johns Hopkins Series in the Mathematical Sciences, The Johns Hopkins Univ. Press, 1992.
    • (1992) Johns Hopkins Series in the Mathematical Sciences
    • Trotter, W.1
  • 24
    • 38249021984 scopus 로고
    • Combinatorial construction of logarithmic differential forms
    • G. Ziegler, Combinatorial construction of logarithmic differential forms, Adv. Math. 76 (1989), 116-154.
    • (1989) Adv. Math. , vol.76 , pp. 116-154
    • Ziegler, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.