메뉴 건너뛰기




Volumn 44, Issue 7, 2004, Pages 789-810

Solution of the shallow-water equations using an adaptive moving mesh method

Author keywords

Adaptive grid method; Kinetic flux vector splitting scheme; Shallow water equations; Surface gradient method

Indexed keywords

ADAPTIVE ALGORITHMS; ITERATIVE METHODS; VECTORS; WATER WAVES;

EID: 1542377515     PISSN: 02712091     EISSN: None     Source Type: Journal    
DOI: 10.1002/fld.681     Document Type: Article
Times cited : (29)

References (30)
  • 1
    • 0028534347 scopus 로고
    • Upwind methods for hyperbolic conservation laws with source terms
    • Berbudez A, Vazquez ME. Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids 1994; 23:1049-1071.
    • (1994) Computers and Fluids , vol.23 , pp. 1049-1071
    • Berbudez, A.1    Vazquez, M.E.2
  • 2
    • 1542576141 scopus 로고    scopus 로고
    • A well-balanced scheme for the numerical processing of source terms in hyperbolic equations
    • Greenberg JM, LeRoux AY. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM Journal on Numerical Analysis 1996; 33:1-16.
    • (1996) SIAM Journal on Numerical Analysis , vol.33 , pp. 1-16
    • Greenberg, J.M.1    LeRoux, A.Y.2
  • 3
    • 0035537697 scopus 로고    scopus 로고
    • A steady-state capturing method for hyperbolic system with geometrical source terms
    • Jin S. A steady-state capturing method for hyperbolic system with geometrical source terms. Mathematical Modelling on Numerical Analysis 2001; 35:631-646.
    • (2001) Mathematical Modelling on Numerical Analysis , vol.35 , pp. 631-646
    • Jin, S.1
  • 4
    • 0001315315 scopus 로고    scopus 로고
    • Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm
    • LeVeque RJ. Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. Journal of Computational Physics 1998; 146:346-365.
    • (1998) Journal of Computational Physics , vol.146 , pp. 346-365
    • LeVeque, R.J.1
  • 5
    • 1542338081 scopus 로고    scopus 로고
    • A gas-kinetic scheme for shallow-water equations with source terms
    • to appear; available at
    • Tang HZ, Tang T, Xu K. A gas-kinetic scheme for shallow-water equations with source terms. Zeitschrift fuer Angewandte Mathematik und Physik 2003, to appear; available at http://www.math.hkbu.edu.hk/~ttang.
    • (2003) Zeitschrift Fuer Angewandte Mathematik und Physik
    • Tang, H.Z.1    Tang, T.2    Xu, K.3
  • 6
    • 0348194970 scopus 로고    scopus 로고
    • Improved treatment of source terms in upwind schemes for shallow water equations in channels with irregular geometry
    • Vazquez-Cendon ME. Improved treatment of source terms in upwind schemes for shallow water equations in channels with irregular geometry. Journal of Computational Physics 1999; 148:497-526.
    • (1999) Journal of Computational Physics , vol.148 , pp. 497-526
    • Vazquez-Cendon, M.E.1
  • 7
    • 0037141036 scopus 로고    scopus 로고
    • A well-balanced gas-kinetic scheme for the shallow-water equations with source terms
    • Xu K. A well-balanced gas-kinetic scheme for the shallow-water equations with source terms. Journal of Computational Physics 2002; 178:633-562.
    • (2002) Journal of Computational Physics , vol.178 , pp. 562-633
    • Xu, K.1
  • 8
    • 0002690008 scopus 로고    scopus 로고
    • The surface gradient method for the treatment of source terms in the shallow water equations
    • Zhou JG, Causon DM, Mingham CG, Ingram DM. The surface gradient method for the treatment of source terms in the shallow water equations. Journal of Computational Physics 2001; 168:1-25.
    • (2001) Journal of Computational Physics , vol.168 , pp. 1-25
    • Zhou, J.G.1    Causon, D.M.2    Mingham, C.G.3    Ingram, D.M.4
  • 10
    • 0035922234 scopus 로고    scopus 로고
    • An efficient dynamically adaptive mesh for potentially singular solutions
    • Ceniceros HD, Hou TY. An efficient dynamically adaptive mesh for potentially singular solutions. Journal of Computational Physics 2001; 172:609-639.
    • (2001) Journal of Computational Physics , vol.172 , pp. 609-639
    • Ceniceros, H.D.1    Hou, T.Y.2
  • 11
    • 48749145227 scopus 로고
    • Self-adjusting grid methods for one-dimensional hyperbolic conservation laws
    • Harten A, Hyman JM. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. Journal of Computational Physics 1983; 50:235-269.
    • (1983) Journal of Computational Physics , vol.50 , pp. 235-269
    • Harten, A.1    Hyman, J.M.2
  • 12
    • 0032226419 scopus 로고    scopus 로고
    • An adaptive grid method and its application to steady Euler flow calculations
    • Liu F, Ji S, Liao G. An adaptive grid method and its application to steady Euler flow calculations. SIAM Journal on Scientific Computing 1998; 20:811-825.
    • (1998) SIAM Journal on Scientific Computing , vol.20 , pp. 811-825
    • Liu, F.1    Ji, S.2    Liao, G.3
  • 14
    • 0038704068 scopus 로고    scopus 로고
    • Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws
    • Tang HZ, Tang T. Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM Journal on Numerical Analysis 2003; 41:487-515.
    • (2003) SIAM Journal on Numerical Analysis , vol.41 , pp. 487-515
    • Tang, H.Z.1    Tang, T.2
  • 15
    • 49949139816 scopus 로고
    • Numerical solution of the quasi-linear Poisson equation
    • Winslow A. Numerical solution of the quasi-linear Poisson equation. Journal of Computational Physics 1967; 1: 149-172.
    • (1967) Journal of Computational Physics , vol.1 , pp. 149-172
    • Winslow, A.1
  • 18
    • 0000379994 scopus 로고
    • Adaptive grid generation from harmonic maps on Riemannian manifolds
    • Dvinsky AS. Adaptive grid generation from harmonic maps on Riemannian manifolds. Journal of Computational Physics 1991; 95:450-476.
    • (1991) Journal of Computational Physics , vol.95 , pp. 450-476
    • Dvinsky, A.S.1
  • 19
    • 0000501759 scopus 로고    scopus 로고
    • Moving mesh methods in multiple dimensions based on harmonic maps
    • Li R, Tang T, Zhang PW. Moving mesh methods in multiple dimensions based on harmonic maps. Journal of Computational Physics 2001; 170:562-588.
    • (2001) Journal of Computational Physics , vol.170 , pp. 562-588
    • Li, R.1    Tang, T.2    Zhang, P.W.3
  • 21
    • 0039094199 scopus 로고
    • An adaptive finite element method for initial-boundary value problems for partial differential equations
    • Davis SF, Flaherty JE. An adaptive finite element method for initial-boundary value problems for partial differential equations. SIAM Journal on Scientific and Statistical Computing 1982; 3:6-27.
    • (1982) SIAM Journal on Scientific and Statistical Computing , vol.3 , pp. 6-27
    • Davis, S.F.1    Flaherty, J.E.2
  • 24
    • 0018964750 scopus 로고
    • Direct simulations methods for compressible inviscid ideal gas-flows
    • Pullin DI. Direct simulations methods for compressible inviscid ideal gas-flows. Journal of Computational Physics 1980; 34:231-244.
    • (1980) Journal of Computational Physics , vol.34 , pp. 231-244
    • Pullin, D.I.1
  • 25
    • 2442433925 scopus 로고
    • Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method
    • van Leer B. Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. Journal of Computational Physics 1979; 32:101-136.
    • (1979) Journal of Computational Physics , vol.32 , pp. 101-136
    • van Leer, B.1
  • 27
    • 0038346370 scopus 로고    scopus 로고
    • An adaptive mesh redistribution method for nonlinear Hamilton-Jacobi equations in two- and three-dimensions
    • Tang HZ, Tang T, Zhang PW. An adaptive mesh redistribution method for nonlinear Hamilton-Jacobi equations in two- and three-dimensions. Journal of Computational Physics 2003; 188:534-572.
    • (2003) Journal of Computational Physics , vol.188 , pp. 534-572
    • Tang, H.Z.1    Tang, T.2    Zhang, P.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.