메뉴 건너뛰기




Volumn 323, Issue 3-4, 2004, Pages 204-209

Random matrix theory for the analysis of the performance of an analog computer: A scaling theory

Author keywords

5.45. a; 89.75.D; 89.79.+c; Dynamical systems; Linear programming; Random matrix theory; Scaling; Theory of analog computation

Indexed keywords

ANALOG COMPUTERS; C (PROGRAMMING LANGUAGE); CONTINUOUS TIME SYSTEMS; DIGITAL COMPUTERS; DIGITAL DEVICES; DISTRIBUTION FUNCTIONS; DYNAMICAL SYSTEMS; LINEAR PROGRAMMING; RANDOM VARIABLES;

EID: 1542375333     PISSN: 03759601     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physleta.2004.01.069     Document Type: Article
Times cited : (6)

References (39)
  • 4
    • 0029037739 scopus 로고
    • Bray D. Nature. 376:1995;307.
    • (1995) Nature , vol.376 , pp. 307
    • Bray, D.1
  • 11
    • 1442345437 scopus 로고
    • Random Matrices
    • San Diego, CA: Academic Press
    • Mehta M.L. Random Matrices. second ed. 1991;Academic Press, San Diego, CA.
    • (1991) Second Ed.
    • Mehta, M.L.1
  • 15
    • 0015514970 scopus 로고
    • May R.M. Nature. 238:1972;413.
    • (1972) Nature , vol.238 , pp. 413
    • May, R.M.1
  • 17
  • 36
    • 0002007858 scopus 로고
    • Some papers that treat random real rectangular matrices, such as the matrices relevant for this work (which are not necessarily Gaussian), are
    • Some papers that treat random real rectangular matrices, such as the matrices relevant for this work (which are not necessarily Gaussian), are Anderson A., Myers R.C., Periwal V. Phys. Lett. B. 254:1991;89.
    • (1991) Phys. Lett. B , vol.254 , pp. 89
    • Anderson, A.1    Myers, R.C.2    Periwal, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.