메뉴 건너뛰기




Volumn , Issue SPEC. ISS., 2003, Pages 111-118

Using Asymmetric Distributions to Improve Text Classifier Probability Estimates

Author keywords

Active learning; Classifier combination; Cost sensitive learning; Text classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATIONAL METHODS; COSTS; DATA REDUCTION; DECISION MAKING; INFORMATION RETRIEVAL; LEARNING SYSTEMS; MATHEMATICAL MODELS; PARAMETER ESTIMATION; PROBABILITY DISTRIBUTIONS; VECTOR QUANTIZATION;

EID: 1542347788     PISSN: 01635840     EISSN: None     Source Type: Journal    
DOI: 10.1145/860454.860457     Document Type: Conference Paper
Times cited : (38)

References (27)
  • 1
    • 0004007675 scopus 로고    scopus 로고
    • Assessing the calibration of naive bayes' posterior estimates
    • Carnegie Mellon, School of Computer Science
    • P. N. Bennett. Assessing the calibration of naive bayes' posterior estimates. Technical Report CMU-CS-00-155, Carnegie Mellon, School of Computer Science, 2000.
    • (2000) Technical Report , vol.CMU-CS-00-155
    • Bennett, P.N.1
  • 2
    • 0041491596 scopus 로고    scopus 로고
    • Using asymmetric distributions to improve classifier probabilities: A comparison of new and standard parametric methods
    • Carnegie Mellon, School of Computer Science
    • P. N. Bennett. Using asymmetric distributions to improve classifier probabilities: A comparison of new and standard parametric methods. Technical Report CMU-CS-02-126, Carnegie Mellon, School of Computer Science, 2002.
    • (2002) Technical Report , vol.CMU-CS-02-126
    • Bennett, P.N.1
  • 3
    • 0038338085 scopus 로고
    • A continuous speech recognition system embedding mlp into hmm
    • H. Bourlard and N. Morgan. A continuous speech recognition system embedding mlp into hmm. In NIPS '89, 1989.
    • (1989) NIPS '89
    • Bourlard, H.1    Morgan, N.2
  • 4
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • G. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78:1-3, 1950.
    • (1950) Monthly Weather Review , vol.78 , pp. 1-3
    • Brier, G.1
  • 5
    • 0002345034 scopus 로고
    • The comparison and evaluation of forecasters
    • M. H. DeGroot and S. E. Fienberg. The comparison and evaluation of forecasters. Statistician, 32:12-22, 1983.
    • (1983) Statistician , vol.32 , pp. 12-22
    • DeGroot, M.H.1    Fienberg, S.E.2
  • 6
    • 0010193324 scopus 로고
    • Comparing probability forecasters: Basic binary concepts and multivariate extensions
    • P. Goel and A. Zellner, editors. Elsevier Science Publishers B.V.
    • M. H. DeGroot and S. E. Fienberg. Comparing probability forecasters: Basic binary concepts and multivariate extensions. In P. Goel and A. Zellner, editors, Bayesian Inference and Decision Techniques. Elsevier Science Publishers B.V., 1986.
    • (1986) Bayesian Inference and Decision Techniques
    • DeGroot, M.H.1    Fienberg, S.E.2
  • 7
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple bayesian classifier
    • P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality of the simple bayesian classifier. In ICML '96, 1996.
    • (1996) ICML '96
    • Domingos, P.1    Pazzani, M.2
  • 9
    • 0033656184 scopus 로고    scopus 로고
    • Hierarchical classification of web content
    • S. T. Dumais and H. Chen. Hierarchical classification of web content. In SIGIR '00, 2000.
    • (2000) SIGIR '00
    • Dumais, S.T.1    Chen, H.2
  • 10
    • 85105809948 scopus 로고    scopus 로고
    • Inductive learning algorithms and representations for text categorization
    • S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and representations for text categorization. In CIKM '98, 1998.
    • (1998) CIKM '98
    • Dumais, S.T.1    Platt, J.2    Heckerman, D.3    Sahami, M.4
  • 11
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277-296, 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.2
  • 13
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In ECML '98, 1998.
    • (1998) ECML '98
    • Joachims, T.1
  • 15
    • 84976725310 scopus 로고
    • A sequential algorithm for training text classifiers: Corrigendum and additional data
    • Fall
    • D. D. Lewis. A sequential algorithm for training text classifiers: Corrigendum and additional data. SIGIR Forum, 29(2):13-19, Fall 1995.
    • (1995) SIGIR Forum , vol.29 , Issue.2 , pp. 13-19
    • Lewis, D.D.1
  • 16
    • 84862055907 scopus 로고    scopus 로고
    • Reuters-21578, distribution 1.0, January
    • D. D. Lewis. Reuters-21578, distribution 1.0. http://www.daviddlewis.com/resources/testcollections/reuters21578, January 1997.
    • (1997)
    • Lewis, D.D.1
  • 17
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers
    • D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In SIGIR '94, 1994.
    • (1994) SIGIR '94
    • Lewis, D.D.1    Gale, W.A.2
  • 20
    • 0034789316 scopus 로고    scopus 로고
    • Modeling score distributions for combining the outputs of search engines
    • R. Manmatha, T. Rath, and F. Feng. Modeling score distributions for combining the outputs of search engines. In SIGIR '10, 2001.
    • (2001) SIGIR '10
    • Manmatha, R.1    Rath, T.2    Feng, F.3
  • 22
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • A. J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors. MIT Press
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers. MIT Press, 1999.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 23
    • 84880853434 scopus 로고    scopus 로고
    • Active learning for class probability estimation and ranking
    • M. Saar-Tsechansky and F. Provost. Active learning for class probability estimation and ranking. In IJCAI '01, 2001.
    • (2001) IJCAI '01
    • Saar-Tsechansky, M.1    Provost, F.2
  • 25
    • 85024373635 scopus 로고    scopus 로고
    • A re-examination of text categorization methods
    • Y. Yang and X. Liu. A re-examination of text categorization methods. In SIGIR '99, 1999.
    • (1999) SIGIR '99
    • Yang, Y.1    Liu, X.2
  • 26
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers
    • B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In ICML '01, 2001.
    • (2001) ICML '01
    • Zadrozny, B.1    Elkan, C.2
  • 27
    • 1542370030 scopus 로고    scopus 로고
    • Reducing multiclass to binary by coupling probability estimates
    • B. Zadrozny and C. Elkan. Reducing multiclass to binary by coupling probability estimates. In KDD '02, 2002.
    • (2002) KDD '02
    • Zadrozny, B.1    Elkan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.