메뉴 건너뛰기




Volumn 2, Issue , 2003, Pages 1293-1298

Dimensionality reduction for denial of service detection problems using RBFNN output sensitivity

Author keywords

Denial of Service (DoS); Feature Selection; Network Intrusion Detection; RBFNN; Sensitivity Analysis

Indexed keywords

COMPUTER SIMULATION; ELECTRONIC COMMERCE; KNOWLEDGE BASED SYSTEMS; SECURITY OF DATA;

EID: 1542316134     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (7)
  • 2
    • 0036804084 scopus 로고    scopus 로고
    • Defending Against Flooding-Based, Distributed Denial-of-Service Attacks: A Tutorial
    • R. K. C. Chang, "Defending Against Flooding-Based, Distributed Denial-of-Service Attacks: A Tutorial," IEEE Communications Magazine, vol. 40, no. 10, pages 42-51, 2002.
    • (2002) IEEE Communications Magazine , vol.40 , Issue.10 , pp. 42-51
    • Chang, R.K.C.1
  • 4
  • 6
    • 0036921634 scopus 로고    scopus 로고
    • Input Dimensionality Reduction for Radial Basis Neural Network Classification Problems Using Sensitivity Measure
    • Beijing
    • W. W. Y. Ng and D. S. Yeung, "Input Dimensionality Reduction for Radial Basis Neural Network Classification Problems Using Sensitivity Measure", Proc. on Int. Conference on Machine Learning and Cybernetics, Beijing, pages 2214-2219, 2002.
    • (2002) Proc. on Int. Conference on Machine Learning and Cybernetics , pp. 2214-2219
    • Ng, W.W.Y.1    Yeung, D.S.2
  • 7
    • 1542292935 scopus 로고    scopus 로고
    • http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.