메뉴 건너뛰기




Volumn 27, Issue 2-3, 2004, Pages 306-319

Applying multivariate time series models to technological product sales forecasting

Author keywords

Forecasting; Litterman bayesian vector autoregression; Technology marketing; Vector autoregression

Indexed keywords

FORECASTING; REGRESSION ANALYSIS; SALES; STATISTICS;

EID: 1542315542     PISSN: 02675730     EISSN: None     Source Type: Journal    
DOI: 10.1504/ijtm.2004.003957     Document Type: Article
Times cited : (12)

References (25)
  • 1
    • 0000997472 scopus 로고
    • Macroeconomics and reality
    • Sims, C.A. (1980) 'Macroeconomics and reality', Econometrica, Vol. 48, No. 1, pp. 1-48.
    • (1980) Econometrica , vol.48 , Issue.1 , pp. 1-48
    • Sims, C.A.1
  • 2
    • 84945763545 scopus 로고
    • Forecasting and conditional projection using realistic prior distributions
    • Doan, T., Litterman, R. B. and Sims, C. (1984) 'Forecasting and conditional projection using realistic prior distributions', Econometric Reviews, Vol. 3, pp.1-100.
    • (1984) Econometric Reviews , vol.3 , pp. 1-100
    • Doan, T.1    Litterman, R.B.2    Sims, C.3
  • 3
    • 84952504842 scopus 로고
    • Forecasting with bayesian vector autoregressions - Five years of experience
    • Litterman, R. B. (1986) 'Forecasting with bayesian vector autoregressions - five years of experience', Journal of Business and Economic Statistics, Vol. 4, No. 1, pp.25-38.
    • (1986) Journal of Business and Economic Statistics , vol.4 , Issue.1 , pp. 25-38
    • Litterman, R.B.1
  • 5
    • 0000185819 scopus 로고
    • Developing a Bayesian vector autoregression forecasting model
    • Spencer, D.E. (1993) 'Developing a Bayesian vector autoregression forecasting model', International Journal of Forecasting, Vol. 9, pp.407-421.
    • (1993) International Journal of Forecasting , vol.9 , pp. 407-421
    • Spencer, D.E.1
  • 6
    • 84979335763 scopus 로고
    • Vector autoregression modeling and forecasting
    • Holden, K. (1995) 'Vector autoregression modeling and forecasting', Journal of Forecasting, Vol. 14, pp.159-166.
    • (1995) Journal of Forecasting , vol.14 , pp. 159-166
    • Holden, K.1
  • 7
    • 84979343959 scopus 로고
    • A BVAR model for the Connecticut economy
    • Dua, P. and Ray, S.C. (1985) 'A BVAR model for the Connecticut economy', Journal of Forecasting, Vol. 14, pp.167-180.
    • (1995) Journal of Forecasting , vol.14 , pp. 167-180
    • Dua, P.1    Ray, S.C.2
  • 8
    • 1542381195 scopus 로고    scopus 로고
    • note
    • Census X-11 methods, including multiplicative and additive methods, are standard methods used by the US Bureau of Census to make seasonal adjustments.
  • 9
    • 84979403808 scopus 로고
    • Structural, VAR and BVAR models of exchange rate determination: A comparison of their forecasting performance
    • Sarantis, N. and Stewart, C. (1995) 'Structural, VAR and BVAR models of exchange rate determination: a comparison of their forecasting performance', Journal of Forecasting, Vol. 14, pp.201-215.
    • (1995) Journal of Forecasting , vol.14 , pp. 201-215
    • Sarantis, N.1    Stewart, C.2
  • 10
    • 84979402367 scopus 로고
    • Forecasting US homes sales using BVAR models and survey data on households' buying attitudes for homes
    • Dua, P. and Smyth, D.J. (1995) 'Forecasting US homes sales using BVAR models and survey data on households' buying attitudes for homes', Journal of Forecasting, Vol. 14, pp.217-227.
    • (1995) Journal of Forecasting , vol.14 , pp. 217-227
    • Dua, P.1    Smyth, D.J.2
  • 11
    • 0000553699 scopus 로고
    • Aggregate and disaggregate sector forecasting using consumer confidence measures
    • Kumar, V., Leone, R.P. and Gaskins, J.N. (1995) 'Aggregate and disaggregate sector forecasting using consumer confidence measures', International Journal of Forecasting, Vol. 11, pp.361-377.
    • (1995) International Journal of Forecasting , vol.11 , pp. 361-377
    • Kumar, V.1    Leone, R.P.2    Gaskins, J.N.3
  • 12
    • 84979423574 scopus 로고
    • BVAR as a category management tool: An illustration and comparison with alternative techniques
    • Curry, D.J., Divakar, S., Mathur, S.K. and Whiteman, C.H. (1995) 'BVAR as a category management tool: an illustration and comparison with alternative techniques', Journal of Forecasting, Vol. 14, pp.181-199.
    • (1995) Journal of Forecasting , vol.14 , pp. 181-199
    • Curry, D.J.1    Divakar, S.2    Mathur, S.K.3    Whiteman, C.H.4
  • 14
    • 0003936322 scopus 로고
    • Estima, Evanston, IL
    • Doan, T. (1992) RATS User's Manual, Estima, Evanston, IL, pp.8-20.
    • (1992) RATS User's Manual , pp. 8-20
    • Doan, T.1
  • 15
    • 1542351423 scopus 로고    scopus 로고
    • note
    • Moreover, the Chinese (Lunar) New Year vacation may occur in January or in February, and occasionally in March. Such uncertainty and irregularity prompts us to discard monthy data in our consideration
  • 16
    • 1542381193 scopus 로고    scopus 로고
    • note
    • Such preliminary deseasonalisation is also found in Doan et al. [3], Dua and Ray [7], Kumar, Leone and Gaskins [10], Salazar and Weale [16], and Marchetti and Parigi [17].
  • 17
    • 0011658296 scopus 로고    scopus 로고
    • Monthly data and short-term forecasting: An assessment of monthly data in VAR model
    • Salazar, E. and Weale, M. (1999) 'Monthly data and short-term forecasting: an assessment of monthly data in VAR model', Journal of Forecasting, Vol. 18, pp.447-462.
    • (1999) Journal of Forecasting , vol.18 , pp. 447-462
    • Salazar, E.1    Weale, M.2
  • 18
    • 0011667855 scopus 로고    scopus 로고
    • Energy consumption, survey data and the prediction of industrial production in Italy: A comparison and combination of different models
    • Marchetti, D.J. and Parigi, G. (2000) 'Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models', Journal of Forecasting, Vol. 19, pp.419-440.
    • (2000) Journal of Forecasting , vol.19 , pp. 419-440
    • Marchetti, D.J.1    Parigi, G.2
  • 20
    • 0000351727 scopus 로고
    • Investigating casual relations by econometric models and cross spectral methods
    • Granger, C.W.J. (1969) 'Investigating casual relations by econometric models and cross spectral methods', Econometrica, Vol. 37, pp.424-438.
    • (1969) Econometrica , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 21
    • 1542381196 scopus 로고    scopus 로고
    • note
    • Many researchers recommended level VAR and opposed the differentiation of sries that present a unit root or trend factors. Based on Enders [22], taking the difference will throw out the co-movement information within a series. Conversely, some researchers considered the VAR model in differentiation ([8,23]). But there are still some arguments among researchers on whether differentiatin for stationary property is necessary in the preliminary transformation. Some researchers set the BVAR only in level data series on the basis of Sims et al's [24] statement "⋯the Bayesian approach is entirely based on the likelihood function, which has the same Gaussian shape regardless of the presence of non-stationarity. A Bayesian inference takes no special account of non-stationarity" [p. 136] (see also [7]). It seems trivial to consider preliminary transformation before the LBVAR model.
  • 23
    • 0011615403 scopus 로고    scopus 로고
    • Bayesian analysis of vector ARMA models using Gibbs sampling
    • Ravishanker, N and Ray, B.K. (1997) 'Bayesian analysis of vector ARMA models using Gibbs sampling', Journal of Forecasting, Vol. 16, pp.177-194.
    • (1997) Journal of Forecasting , vol.16 , pp. 177-194
    • Ravishanker, N.1    Ray, B.K.2
  • 24
    • 0000745315 scopus 로고
    • Inference in linear time series models with some unit roots
    • Sims, C.A., Stock, J.H. and Watson, M.W. (1990) 'Inference in linear time series models with some unit roots', Econometrica, Vol.58, pp.113-144.
    • (1990) Econometrica , vol.58 , pp. 113-144
    • Sims, C.A.1    Stock, J.H.2    Watson, M.W.3
  • 25
    • 1542381190 scopus 로고    scopus 로고
    • note
    • In the differenced VAR model, the differenced series for specification is from 1990:2 to 1997:4. Then the differentiated series from 1998:1 to 2000:1 is used as a prediction assessment.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.