메뉴 건너뛰기




Volumn 89, Issue 4, 2002, Pages 861-875

Influence functions and outlier detection under the common principal components model: A robust approach

Author keywords

Asymptotic variance; Common principal components; Partial influence function; Projectionpursuit; Robust estimation; Robust scatter matrix

Indexed keywords


EID: 1542282049     PISSN: 00063444     EISSN: None     Source Type: Journal    
DOI: 10.1093/biomet/89.4.861     Document Type: Article
Times cited : (36)

References (18)
  • 1
    • 0032695682 scopus 로고    scopus 로고
    • Hierarchical comparison of genetic variance-covariance matrices. II. Coastal-inland divergence in the garter snake Thamnophis elegans
    • ARNOLD, S. J. & PHILLIPS, P. C. (1999). Hierarchical comparison of genetic variance-covariance matrices. II. Coastal-inland divergence in the garter snake Thamnophis elegans. Evolution 53, 1516-27.
    • (1999) Evolution , vol.53 , pp. 1516-1527
    • Arnold, S.J.1    Phillips, P.C.2
  • 2
    • 1542282048 scopus 로고    scopus 로고
    • A robust approach to common principal components
    • Ed. L. T. Fernholz, S. Morgenthaler and W. Stahel. Basel: Birkhauser
    • BOENTE, G. & ORELLANA, L. (2001). A robust approach to common principal components. In Statistics in Genetics and in the Environmental Sciences, Ed. L. T. Fernholz, S. Morgenthaler and W. Stahel, pp. 117-47. Basel: Birkhauser.
    • (2001) Statistics in Genetics and in the Environmental Sciences , pp. 117-147
    • Boente, G.1    Orellana, L.2
  • 3
    • 0001527254 scopus 로고
    • Influence in principal components analysis
    • CRITCHLEY, F. (1985). Influence in principal components analysis. Biometrika 72, 627-36.
    • (1985) Biometrika , vol.72 , pp. 627-636
    • Critchley, F.1
  • 4
    • 24944440067 scopus 로고    scopus 로고
    • Empirical influence functions for robust principal component analysis
    • Alexandria, VA: American Statistical Association
    • CROUX, C. & HAESBROECK, G. (1999). Empirical influence functions for robust principal component analysis. In Proc. Statist. Comp. Sect., Am. Statist. Assoc., pp. 201-6. Alexandria, VA: American Statistical Association.
    • (1999) Proc. Statist. Comp. Sect., Am. Statist. Assoc. , pp. 201-206
    • Croux, C.1    Haesbroeck, G.2
  • 5
    • 0001088628 scopus 로고    scopus 로고
    • Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies
    • CROUX, C. & HAESBROECK, G. (2000). Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies. Biometrika 87, 603-18.
    • (2000) Biometrika , vol.87 , pp. 603-618
    • Croux, C.1    Haesbroeck, G.2
  • 6
    • 0002593186 scopus 로고    scopus 로고
    • A fast algorithm for robust principal components based on projection-pursuit
    • Ed. A. Prat. Heidelberg; Physica-Verlag
    • CROUX, C. & RUIZ-GAZEN, A. (1996). A fast algorithm for robust principal components based on projection-pursuit. In Compstat: Proceedings in Computational Statistics, Ed. A. Prat, pp. 211-7. Heidelberg; Physica-Verlag.
    • (1996) Compstat: Proceedings in Computational Statistics , pp. 211-217
    • Croux, C.1    Ruiz-Gazen, A.2
  • 7
    • 0000643180 scopus 로고
    • Common principal components in k groups
    • FLURY, B. K. (1984). Common principal components in k groups. J. Am. Statist. Assoc. 79, 892-8.
    • (1984) J. Am. Statist. Assoc. , vol.79 , pp. 892-898
    • Flury, B.K.1
  • 8
    • 0345189280 scopus 로고
    • Asymptotic theory for common principal components
    • FLURY, B. K. (1986). Asymptotic theory for common principal components. Ann. Statist. 14, 418-30.
    • (1986) Ann. Statist. , vol.14 , pp. 418-430
    • Flury, B.K.1
  • 10
    • 0038304445 scopus 로고
    • Using the influence function in robust principal components analysis
    • Ed. S. Morgenthaler, E. Ronchetti and W. Stahel. Basel: Birkhauser
    • JAUPI, L. & SAPORTA, G. (1993). Using the influence function in robust principal components analysis. In New Directions in Statistical Data Analysis and Robustness, Ed. S. Morgenthaler, E. Ronchetti and W. Stahel, pp. 147-56. Basel: Birkhauser.
    • (1993) New Directions in Statistical Data Analysis and Robustness , pp. 147-156
    • Jaupi, L.1    Saporta, G.2
  • 11
    • 0040155851 scopus 로고    scopus 로고
    • Ontogeny and individual variation: Analysis of patterned covariance matrices with common principal components
    • KLINGERBERG, C. P. & NEUENSCHWANDER, B. E. (1996). Ontogeny and individual variation: analysis of patterned covariance matrices with common principal components. Syst. Biol. 45, 135-7.
    • (1996) Syst. Biol. , vol.45 , pp. 135-137
    • Klingerberg, C.P.1    Neuenschwander, B.E.2
  • 13
    • 0032743802 scopus 로고    scopus 로고
    • Hierarchical comparison of genetic variance-covariance matrices. I. Using the Flury hierarchy
    • PHILLIPS, P. C. & ARNOLD, S. J. (1999). Hierarchical comparison of genetic variance-covariance matrices. I. Using the Flury hierarchy. Evolution 53, 1506-15.
    • (1999) Evolution , vol.53 , pp. 1506-1515
    • Phillips, P.C.1    Arnold, S.J.2
  • 14
    • 0036858965 scopus 로고    scopus 로고
    • Partial influence functions
    • To appear
    • PIRES, A. M. & BRANCO, J. (2002). Partial influence functions. J. Mult. Anal. To appear.
    • (2002) J. Mult. Anal.
    • Pires, A.M.1    Branco, J.2
  • 15
    • 24944433288 scopus 로고    scopus 로고
    • A robust version of principal factor analysis
    • Ed. J. Bethlehem and P. van der Heijden. Heidelberg: Physica-Verlag
    • PISON, G., ROUSSEEUW, P. J., FILZMOSER, P. & CROUX, C. (2000). A robust version of principal factor analysis. In Compstat: Proceedings in Computational Statistics, Ed. J. Bethlehem and P. van der Heijden, pp. 385-90. Heidelberg: Physica-Verlag.
    • (2000) Compstat: Proceedings in Computational Statistics , pp. 385-390
    • Pison, G.1    Rousseeuw, P.J.2    Filzmoser, P.3    Croux, C.4
  • 16
    • 0002564033 scopus 로고
    • Multivariate estimation with high breakdown point
    • Ed. W. Grossmann, G. Pflug, I. Vincze and W. Wertz. Dordrecht: Reidel
    • ROUSSEEUW, P. J. (1985), Multivariate estimation with high breakdown point. In Mathematical Statistics and Applications, Vol. B, Ed. W. Grossmann, G. Pflug, I. Vincze and W. Wertz, pp. 283-97. Dordrecht: Reidel.
    • (1985) Mathematical Statistics and Applications , vol.B , pp. 283-297
    • Rousseeuw, P.J.1
  • 17
    • 84950439147 scopus 로고
    • Unmasking multivariate outliers and leverage points
    • ROUSSEEUW, P. J. & VAN ZOMEREN, B. C. (1990). Unmasking multivariate outliers and leverage points. J. Am. Statist. Assoc. 85, 633-9.
    • (1990) J. Am. Statist. Assoc. , vol.85 , pp. 633-639
    • Rousseeuw, P.J.1    Van Zomeren, B.C.2
  • 18
    • 0000653510 scopus 로고    scopus 로고
    • Local influence in principal components analysis
    • SHI, L. (1997). Local influence in principal components analysis. Biometrika 84, 175-86.
    • (1997) Biometrika , vol.84 , pp. 175-186
    • Shi, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.