메뉴 건너뛰기




Volumn 5, Issue , 2003, Pages 3119-3124

Noise reduction to text categorization based on density for KNN

Author keywords

K Nearest Neighbor; Text classification

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTATIONAL METHODS; INFORMATION ANALYSIS; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS; NOISE ABATEMENT; WORLD WIDE WEB;

EID: 1542276818     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (12)
  • 1
    • 0001409330 scopus 로고    scopus 로고
    • Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval In Machine Learning
    • D. Lewis, Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval In Machine Learning, the 10th European Conference on Machine Learning, 1998
    • (1998) 10th European Conference on Machine Learning
    • Lewis, D.1
  • 2
    • 85024373635 scopus 로고    scopus 로고
    • A Re-Examination of Text Categorization Methods
    • Y. Yang and X. Lin, A Re-Examination of Text Categorization Methods. In Proceedings of SIGIR 99, 1999
    • (1999) Proceedings of SIGIR 99
    • Yang, Y.1    Lin, X.2
  • 3
    • 0028461554 scopus 로고
    • An Example-Based Mapping Method for Text Categorization and Retrieval
    • Y. Yang and C. G. Chute, An Example-Based Mapping Method for Text Categorization and Retrieval, ACM Transaction on Information Systems (TOIS), 12(3): 252-277, 1994
    • (1994) ACM Transaction on Information Systems (TOIS) , vol.12 , Issue.3 , pp. 252-277
    • Yang, Y.1    Chute, C.G.2
  • 6
    • 0000636553 scopus 로고    scopus 로고
    • Text Categorization With Support Vector Machines: Learning With Many Relevant Features
    • T. Joachims, Text Categorization With Support Vector Machines: Learning With Many Relevant Features, 10th European Conference on Machine Learning, 1998
    • (1998) 10th European Conference on Machine Learning
    • Joachims, T.1
  • 7
    • 84931162639 scopus 로고
    • The Condensed Nearest Neighbor Rule
    • P. E. Hart, The Condensed Nearest Neighbor Rule, IEEE Trans. Information Theory, 14 (3):515-516, 1968
    • (1968) IEEE Trans. Information Theory , vol.14 , Issue.3 , pp. 515-516
    • Hart, P.E.1
  • 8
    • 0015361129 scopus 로고
    • Asymptotic Properties of Nearest Neighbor Rules Using Edited Data
    • D. L. Wilson, Asymptotic Properties of Nearest Neighbor Rules Using Edited Data, IEEE Transactions on Systems, Man and Cybernetics, SMC-2: 408-421, 1972
    • (1972) IEEE Transactions on Systems, Man and Cybernetics , vol.SMC-2 , pp. 408-421
    • Wilson, D.L.1
  • 10
    • 0000935031 scopus 로고
    • Editing for the k-Nearest Neighbors Rule by A Genetic Algorithms
    • L. I. Kuncheva, Editing for the k-Nearest Neighbors Rule by A Genetic Algorithms. Pattern Rcognition Letters. 1995, 16:809-814
    • (1995) Pattern Rcognition Letters , vol.16 , pp. 809-814
    • Kuncheva, L.I.1
  • 11
    • 0031168619 scopus 로고    scopus 로고
    • Fitness Functions in Editing K-NN Reference Set by Genetic Algorithms
    • L. I. Kuncheva, Fitness Functions in Editing K-NN Reference Set by Genetic Algorithms, Pattern Rcognition, 30(6): 1041-1049, 1997
    • (1997) Pattern Rcognition , vol.30 , Issue.6 , pp. 1041-1049
    • Kuncheva, L.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.