메뉴 건너뛰기




Volumn 15, Issue 2, 2005, Pages 133-137

Artificial neural networks in urolithiasis

Author keywords

Artificial intelligence; Neural networks (computer); Urolithiasis

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMPARATIVE STUDY; CONCEPT FORMATION; EXTRACORPOREAL LITHOTRIPSY; HUMAN; MATHEMATICAL ANALYSIS; MATHEMATICAL AND STATISTICAL PROCEDURES; PREDICTION AND FORECASTING; PRIORITY JOURNAL; REVIEW; STATISTICAL ANALYSIS; STONE ANALYSIS; TECHNIQUE; TREATMENT OUTCOME; URETER STONE; UROLITHIASIS;

EID: 15244350786     PISSN: 09630643     EISSN: None     Source Type: Journal    
DOI: 10.1097/01.mou.0000160629.81978.7a     Document Type: Review
Times cited : (12)

References (28)
  • 1
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952; 117:500-544.
    • (1952) J Physiol , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 2
    • 0002988210 scopus 로고
    • Computing machinery and intelligence
    • Turing AM. Computing machinery and intelligence. Mind 1950; 59:433-460.
    • (1950) Mind , vol.59 , pp. 433-460
    • Turing, A.M.1
  • 3
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in the nervous system
    • McCulloch WS, Pitts WA. A logical calculus of ideas immanent in the nervous system. Bull Math Biophys 1943; 5:115-133.
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.A.2
  • 4
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 1962; 160:106-154.
    • (1962) J Physiol , vol.160 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 8
    • 0031397535 scopus 로고    scopus 로고
    • Artificial intelligence and neural networks: Concept, applications and future in urology
    • Tewari A. Artificial intelligence and neural networks: concept, applications and future in urology. Br J Urol 1997; 80(Suppl 3):53-58.
    • (1997) Br J Urol , vol.80 , Issue.3 SUPPL. , pp. 53-58
    • Tewari, A.1
  • 9
    • 0028932561 scopus 로고
    • This month in investigative urology. Comment on the use of neural networks in clinical urology
    • Niederberger C. This month in investigative urology. Comment on the use of neural networks in clinical urology. J Urol 1995; 153:1674-1677.
    • (1995) J Urol , vol.153 , pp. 1674-1677
    • Niederberger, C.1
  • 10
    • 0028100672 scopus 로고
    • Artificial neural network predictions of urinary calculus compositions analysed with infrared spectroscopy
    • Volmer M, Wolthers BG, Metting HJ, et al. Artificial neural network predictions of urinary calculus compositions analysed with infrared spectroscopy. Clin Chem 1994; 40:1692-1697.
    • (1994) Clin Chem , vol.40 , pp. 1692-1697
    • Volmer, M.1    Wolthers, B.G.2    Metting, H.J.3
  • 11
    • 0034954657 scopus 로고    scopus 로고
    • Infrared analysis of urinary calculi by a single reflection accessory and a neural network interpretation algorithm
    • Volmer M, de Vries JC, Goldschmidt HM. Infrared analysis of urinary calculi by a single reflection accessory and a neural network interpretation algorithm. Clin Chem 2001; 47:1287-1296.
    • (2001) Clin Chem , vol.47 , pp. 1287-1296
    • Volmer, M.1    De Vries, J.C.2    Goldschmidt, H.M.3
  • 12
    • 0034884744 scopus 로고    scopus 로고
    • Simultaneous determination of composition of human urinary calculi by use of artificial neural networks
    • Kuzmanovski I, Zografski Z, Trpkovska M, et al. Simultaneous determination of composition of human urinary calculi by use of artificial neural networks. Fresenius J Anal Chem 2001; 370:919-923.
    • (2001) Fresenius J Anal Chem , vol.370 , pp. 919-923
    • Kuzmanovski, I.1    Zografski, Z.2    Trpkovska, M.3
  • 13
    • 0034186713 scopus 로고    scopus 로고
    • Value of the urinary stone promoters/inhibitors ratios in the estimation of the risk of urolithiasis
    • Batinic D, Milosevic D, Blau N, et al. Value of the urinary stone promoters/inhibitors ratios in the estimation of the risk of urolithiasis. J Chem Inf Comput Sci 2000; 40:607-610.
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 607-610
    • Batinic, D.1    Milosevic, D.2    Blau, N.3
  • 14
    • 0038582776 scopus 로고    scopus 로고
    • Prediction of stone disease by discriminant analysis and artificial neural networks in genetic polymorphisms: A new method
    • Chiang D, Chiang HC, Chen WC, Tsai FJ. Prediction of stone disease by discriminant analysis and artificial neural networks in genetic polymorphisms: a new method. BJU Int 2003; 91:661-666. An interesting study of the genetic determinants of urolithiasis using ANNs.
    • (2003) BJU Int , vol.91 , pp. 661-666
    • Chiang, D.1    Chiang, H.C.2    Chen, W.C.3    Tsai, F.J.4
  • 15
    • 2942592790 scopus 로고    scopus 로고
    • Prediction of upper urinary tract calculi using an artificial neural network
    • Tanthanuch M, Tanthanuch S. Prediction of upper urinary tract calculi using an artificial neural network. J Med Assoc Thai 2004; 87:515-518. An interesting study that includes an introduction to the ANN mathematics.
    • (2004) J Med Assoc Thai , vol.87 , pp. 515-518
    • Tanthanuch, M.1    Tanthanuch, S.2
  • 16
    • 0033926996 scopus 로고    scopus 로고
    • Prediction of spontaneous ureteral calculous passage by an artificial neural network
    • Cummings JM, Boullier JA, Izenberg SD, et al. Prediction of spontaneous ureteral calculous passage by an artificial neural network. J Urol 2000; 164:326-328.
    • (2000) J Urol , vol.164 , pp. 326-328
    • Cummings, J.M.1    Boullier, J.A.2    Izenberg, S.D.3
  • 17
    • 0032006216 scopus 로고    scopus 로고
    • Use of a neural network to predict stone growth after shock wave lithotripsy
    • Michaels EK, Niederberger CS, Golden RM, et al. Use of a neural network to predict stone growth after shock wave lithotripsy. Urology 1998; 51:335-338.
    • (1998) Urology , vol.51 , pp. 335-338
    • Michaels, E.K.1    Niederberger, C.S.2    Golden, R.M.3
  • 18
    • 0037376312 scopus 로고    scopus 로고
    • Prediction of lower pole stone clearance after shock wave lithotripsy using an artificial neural network
    • Poulakis V, Dahm P, Witzsch U, et al. Prediction of lower pole stone clearance after shock wave lithotripsy using an artificial neural network. J Urol 2003; 169:1250-1256. An excellent study using important predictive clinical and radiological variables in urolithiasis.
    • (2003) J Urol , vol.169 , pp. 1250-1256
    • Poulakis, V.1    Dahm, P.2    Witzsch, U.3
  • 19
    • 0023131318 scopus 로고
    • Disturbed urinary transport in the pelvicalyceal system in calcium-oxalate stone patients
    • Schulz E, Hengst E, Brundig P, et al. Disturbed urinary transport in the pelvicalyceal system in calcium-oxalate stone patients. Urol Res 1987; 15:109-113.
    • (1987) Urol Res , vol.15 , pp. 109-113
    • Schulz, E.1    Hengst, E.2    Brundig, P.3
  • 20
    • 0031006806 scopus 로고    scopus 로고
    • Comparative follow-up of patients with acute and obtuse infundibulum-pelvic angle submitted to extracorporeal shock wave lithotripsy for lower caliceal stones: Preliminary report and proposed study design
    • Sampaio FJ, D'Anunciacao AL, Silva EC. Comparative follow-up of patients with acute and obtuse infundibulum-pelvic angle submitted to extracorporeal shock wave lithotripsy for lower caliceal stones: preliminary report and proposed study design. J Endourol 1997; 11:157-161.
    • (1997) J Endourol , vol.11 , pp. 157-161
    • Sampaio, F.J.1    D'Anunciacao, A.L.2    Silva, E.C.3
  • 21
    • 0037635380 scopus 로고    scopus 로고
    • Artificial neural networks in predicting optimum renal stone fragmentation by extracorporeal shock wave lithotripsy: A preliminary study
    • Hamid A, Dwivedi US, Singh TN, et al. Artificial neural networks in predicting optimum renal stone fragmentation by extracorporeal shock wave lithotripsy: a preliminary study. BJU Int 2003; 91:821-824.
    • (2003) BJU Int , vol.91 , pp. 821-824
    • Hamid, A.1    Dwivedi, U.S.2    Singh, T.N.3
  • 22
    • 3242783369 scopus 로고    scopus 로고
    • Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or a statistical model?
    • Gomha MA, Sheir KZ, Showky S, et al. Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or a statistical model? J Urol 2004; 172:175-179. An excellent comparative study of ANN and statistical analysis with an interesting discussion.
    • (2004) J Urol , vol.172 , pp. 175-179
    • Gomha, M.A.1    Sheir, K.Z.2    Showky, S.3
  • 23
    • 0038024167 scopus 로고    scopus 로고
    • Artificial neural networks for decision-making in urologic oncology
    • Anagnostou T, Remzi M, Lykourinas M, Djavan B. Artificial neural networks for decision-making in urologic oncology. Eur Urol 2003; 43:596-603. A good review of the ANNs in urological oncology.
    • (2003) Eur Urol , vol.43 , pp. 596-603
    • Anagnostou, T.1    Remzi, M.2    Lykourinas, M.3    Djavan, B.4
  • 24
    • 0030913315 scopus 로고    scopus 로고
    • Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update
    • Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 1997; 277:1445-1451.
    • (1997) JAMA , vol.277 , pp. 1445-1451
    • Partin, A.W.1    Kattan, M.W.2    Subong, E.N.3
  • 25
    • 84887791264 scopus 로고    scopus 로고
    • Diagnosing breast cancer from FNAs: Variable relevance in neural network and logistic regression models
    • Ohno-Machado L, Bialek D. Diagnosing breast cancer from FNAs: variable relevance in neural network and logistic regression models. Medinfo 1998; 9(Pt 1):537-540.
    • (1998) Medinfo , vol.9 , Issue.1 PART , pp. 537-540
    • Ohno-Machado, L.1    Bialek, D.2
  • 26
    • 0036125478 scopus 로고    scopus 로고
    • Pain model and fuzzy logic patient-controlled analgesia in shock wave lithotripsy
    • Shieh JS, Chang LW, Wang MS, et al. Pain model and fuzzy logic patient-controlled analgesia in shock wave lithotripsy. Med Biol Eng Comput 2002; 40:128-136.
    • (2002) Med Biol Eng Comput , vol.40 , pp. 128-136
    • Shieh, J.S.1    Chang, L.W.2    Wang, M.S.3
  • 27
    • 0035674244 scopus 로고    scopus 로고
    • Genetic adaptive neural network to predict biochemical failure after radical prostatectomy: A multi-institutional study
    • Tewari A, Issa M, El-Galley R, et al. Genetic adaptive neural network to predict biochemical failure after radical prostatectomy: a multi-institutional study. Mol Urol 2001; 5:163-169.
    • (2001) Mol Urol , vol.5 , pp. 163-169
    • Tewari, A.1    Issa, M.2    El-Galley, R.3
  • 28
    • 0032324086 scopus 로고    scopus 로고
    • Novel staging tool for localized prostate cancer: A pilot study using genetic adaptive neural networks
    • Tewari A, Narayan P. Novel staging tool for localized prostate cancer: a pilot study using genetic adaptive neural networks. J Urol 1998; 160:430-436.
    • (1998) J Urol , vol.160 , pp. 430-436
    • Tewari, A.1    Narayan, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.