메뉴 건너뛰기




Volumn 22, Issue 1, 2005, Pages 43-50

Meshless method based on coupled radial and polynomial basis functions

Author keywords

Galerkin method; Meshless method; Partition of unity quadrature; Polynomial basis functions; Radial basis functions

Indexed keywords

APPROXIMATION THEORY; BOUNDARY VALUE PROBLEMS; FUNCTIONS; GALERKIN METHODS; INTERPOLATION; POLYNOMIALS;

EID: 15044364793     PISSN: 1001246X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (5)

References (23)
  • 7
    • 0033885238 scopus 로고    scopus 로고
    • The local boundary integral equation (LBIE) and it's meshless implementation for linear elasticity
    • Atluri S N, Sladek J, Sladek V, Zhu T. The local boundary integral equation (LBIE) and it's meshless implementation for linear elasticity[J]. Computational Mechanics, 2000,25:180-198.
    • (2000) Computational Mechanics , vol.25 , pp. 180-198
    • Atluri, S.N.1    Sladek, J.2    Sladek, V.3    Zhu, T.4
  • 8
    • 0033872785 scopus 로고    scopus 로고
    • The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics
    • Atluri S N, Zhu T. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics[J]. Computational Mechanics, 2000,25:169-179.
    • (2000) Computational Mechanics , vol.25 , pp. 169-179
    • Atluri, S.N.1    Zhu, T.2
  • 10
    • 15044348192 scopus 로고    scopus 로고
    • Chinese source
  • 11
    • 0002434097 scopus 로고    scopus 로고
    • Solving partial differential equations by collocation with radial basis functions
    • Mehaute A.L., Rabut C. and Schumaker L.L. (ed.), Vanderbilt University Press
    • Fasshauer G E. Solving partial differential equations by collocation with radial basis functions[A]. In: Mehaute A L, Rabut C, Schumaker L L eds. Surface Fitting and Multiresolution Methods. Vanderbilt University Press, 1997.131-138.
    • (1997) Surface Fitting and Multiresolution Methods , pp. 131-138
    • Fasshauer, G.E.1
  • 12
    • 0041593773 scopus 로고    scopus 로고
    • Solving differential equations with radial basis functions: Multilevel methods and smoothing
    • Fasshauer G E. Solving differential equations with radial basis functions: multilevel methods and smoothing[J]. Advances in Computational Mathematics, 1999,11:139-159.
    • (1999) Advances in Computational Mathematics , vol.11 , pp. 139-159
    • Fasshauer, G.E.1
  • 13
    • 0034294250 scopus 로고    scopus 로고
    • Meshless methods based on collocation with radial basis functions
    • Zhang X, Song K Z, Lu M W, Liu X. Meshless methods based on collocation with radial basis functions[J]. Computational Mechanics, 2000,26:333-343.
    • (2000) Computational Mechanics , vol.26 , pp. 333-343
    • Zhang, X.1    Song, K.Z.2    Lu, M.W.3    Liu, X.4
  • 14
    • 0242667184 scopus 로고    scopus 로고
    • A numerical study of some radial basis function based solution methods for elliptic PDEs
    • Larsson E. A numerical study of some radial basis function based solution methods for elliptic PDEs[J]. Computers and Mathematics with Applications, 2003,46:891-902.
    • (2003) Computers and Mathematics with Applications , vol.46 , pp. 891-902
    • Larsson, E.1
  • 15
    • 0002596552 scopus 로고
    • Creating surfaces from scattered data using radial basis functions
    • mæhlen M, Lyche T. and Schumaker L.L. (ed.), Vanderbilt University Press
    • Schaback R. Creating surfaces from scattered data using radial basis functions[A]. In: mæhlen M, Lyche T, Schumaker L L eds. Mathematical Methods in Computer Aided Geometric Design III, Vanderbilt University Press, 1995.477-496.
    • (1995) Mathematical Methods in Computer Aided Geometric Design III , pp. 477-496
    • Schaback, R.1
  • 17
    • 0037192730 scopus 로고    scopus 로고
    • On the optimal shape parameters of radial basis functions used for 2-D meshless methods
    • Wang J G, Liu G R. On the optimal shape parameters of radial basis functions used for 2-D meshless methods[J]. Computer Methods in Applied Mechanics and Engineering, 2002,191:2611-2630.
    • (2002) Computer Methods in Applied Mechanics and Engineering , vol.191 , pp. 2611-2630
    • Wang, J.G.1    Liu, G.R.2
  • 18
    • 0000764217 scopus 로고    scopus 로고
    • Error estimates for interpolation by compactly supported radial basis functions of minimal degree
    • Wendland H. Error estimates for interpolation by compactly supported radial basis functions of minimal degree[J]. Journal of Approximation Theory, 1998,93:258-272.
    • (1998) Journal of Approximation Theory , vol.93 , pp. 258-272
    • Wendland, H.1
  • 20
    • 12944258243 scopus 로고    scopus 로고
    • Optimal approximation orders in Lp for radial basis functions
    • Wendland H. Optimal approximation orders in Lp for radial basis functions[J]. East Journal on Approximations, 2000,6:87-102.
    • (2000) East Journal on Approximations , vol.6 , pp. 87-102
    • Wendland, H.1
  • 21
    • 0033475852 scopus 로고    scopus 로고
    • Improved error bounds for scattered data interpolation by radial basis functions
    • Schaback R. Improved error bounds for scattered data interpolation by radial basis functions[J]. Mathematics of Computation, 1999,68:201-216.
    • (1999) Mathematics of Computation , vol.68 , pp. 201-216
    • Schaback, R.1
  • 22
    • 15044362457 scopus 로고    scopus 로고
    • Optimal distribution of centers for radial basis function methods
    • Technische Universtat Munchen, Report TUM-M0004
    • Iske A. Optimal distribution of centers for radial basis function methods[R]. Technische Universtat Munchen, Report TUM-M0004, June 2000.
    • (2000)
    • Iske, A.1
  • 23
    • 0036608933 scopus 로고    scopus 로고
    • A truly meshless Galerkin method based on a moving least squares quadrature
    • Marc D, Hung N D. A truly meshless Galerkin method based on a moving least squares quadrature[J]. Communications in Numerical Methods in Engineering, 2002,18:1-9.
    • (2002) Communications in Numerical Methods in Engineering , vol.18 , pp. 1-9
    • Marc, D.1    Hung, N.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.