-
11
-
-
4244054960
-
-
E. Arrigoni, Phys. Rev. Lett. 83, 128 (1999); Phys. Rev. B 61, 7909 (2000); Phys. Rev. Lett. 80, 790 (1998).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 128
-
-
Arrigoni, E.1
-
12
-
-
0001375321
-
-
E. Arrigoni, Phys. Rev. Lett. 83, 128 (1999); Phys. Rev. B 61, 7909 (2000); Phys. Rev. Lett. 80, 790 (1998).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 7909
-
-
-
13
-
-
4243549339
-
-
E. Arrigoni, Phys. Rev. Lett. 83, 128 (1999); Phys. Rev. B 61, 7909 (2000); Phys. Rev. Lett. 80, 790 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 790
-
-
-
14
-
-
0034683344
-
-
M. G. Zacher, R. Eder, E. Arrigoni, and W. Hanke, Phys. Rev. Lett. 85, 2585 (2000); Phys. Rev. B 65, 045109 (2002).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 2585
-
-
Zacher, M.G.1
Eder, R.2
Arrigoni, E.3
Hanke, W.4
-
15
-
-
0037081358
-
-
M. G. Zacher, R. Eder, E. Arrigoni, and W. Hanke, Phys. Rev. Lett. 85, 2585 (2000); Phys. Rev. B 65, 045109 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 045109
-
-
-
18
-
-
0030528685
-
-
A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
-
(1996)
Rev. Mod. Phys.
, vol.68
, pp. 13
-
-
Georges, A.1
Kotliar, G.2
Krauth, W.3
Rozenberg, M.J.4
-
20
-
-
0001448115
-
-
M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and H. R. Krishnamurthy, Phys. Rev. B 58, R7475 (1998).
-
(1998)
Phys. Rev. B
, vol.58
-
-
Hettler, M.H.1
Tahvildar-Zadeh, A.N.2
Jarrell, M.3
Pruschke, T.4
Krishnamurthy, H.R.5
-
22
-
-
0035968783
-
-
G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Phys. Rev. Lett. 87, 186401 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 186401
-
-
Kotliar, G.1
Savrasov, S.Y.2
Pálsson, G.3
Biroli, G.4
-
25
-
-
0035891019
-
-
M. Jarrell, T. Maier, C. Huscroft, and S. Moukouri, Phys. Rev. B 64, 195130 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 195130
-
-
Jarrell, M.1
Maier, T.2
Huscroft, C.3
Moukouri, S.4
-
39
-
-
0042496206
-
-
T. Maier, M. Jarrell, T. Pruschke, and J. Keller, Eur. Phys. J. B 13, 613 (2000).
-
(2000)
Eur. Phys. J. B
, vol.13
, pp. 613
-
-
Maier, T.1
Jarrell, M.2
Pruschke, T.3
Keller, J.4
-
42
-
-
14944349223
-
-
to be published, cond-mat/0402580.
-
M. Aichhorn, H. G. Evertz, W. von der Linden, and M. Potthoff, Phys. Rev. B (to be published), cond-mat/0402580.
-
Phys. Rev. B
-
-
Aichhorn, M.1
Evertz, H.G.2
Von Der Linden, W.3
Potthoff, M.4
-
43
-
-
14944353467
-
-
note
-
This is due to the fact that, as in the expansion around the atomic limit of the Hubbard model, corrections beyond the CPT contain cumulants of higher-order correlation functions that vanish in the noninteracting limit (Ref. 5).
-
-
-
-
44
-
-
14944359356
-
-
note
-
This approach has been recently suggested to introduce periodic boundary conditions. (Ref. 38). Hopping terms connecting the cluster boundaries are added to the Hamiltonian for the isolated cluster and then subtracted again within the CPT scheme. This procedure has turned out not to be satisfactory, however. Indeed it has been shown in Ref. 24 that open boundary conditions should be used for the variational CPT.
-
-
-
-
45
-
-
14944360334
-
-
note
-
The physical self-energy is given by a stationary point of Ω[Σ]. This can be a minimum, maximum or a saddle point (Ref. 13). For a one-dimensional parameterization, Σ=Σ(h), there are minima and maxima in general. In case of several stationary points, the one with lowest Ω is stable thermodynamically. In case of a single parameter h this must be always at a minimum.
-
-
-
-
46
-
-
14944375542
-
-
note
-
However, even in this case one should expect some reduction of the magnetization due to spin fluctuations with a wavelength shorter than the cluster size.
-
-
-
|