-
1
-
-
0008931743
-
-
D. Östling, P. Stampfli, and K. H. Bennemann, Z. Phys. D: At., Mol. Clusters 28, 169 (1993).
-
(1993)
Z. Phys. D: At., Mol. Clusters
, vol.28
, pp. 169
-
-
Östling, D.1
Stampfli, P.2
Bennemann, K.H.3
-
2
-
-
9644257834
-
-
J. P. Dewitz, W. Hübner, and K. H. Bennemann, Z. Phys. D: At., Mol. Clusters 37, 75 (1996).
-
(1996)
Z. Phys. D: At., Mol. Clusters
, vol.37
, pp. 75
-
-
Dewitz, J.P.1
Hübner, W.2
Bennemann, K.H.3
-
3
-
-
14944374809
-
-
note
-
2 for the approximation of Dewitz and co-workers.
-
-
-
-
4
-
-
84974687151
-
-
Leipzig
-
G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).
-
(1908)
Ann. Phys.
, vol.25
, pp. 377
-
-
Mie, G.1
-
5
-
-
0000620609
-
-
J. Kasparian, B. Krämer, J. P. Dewitz, S. Vajda, B. Vezin, V. Boutou, T. Leisner, W. Hübner, J.-P. Wolf, and L. Wöste et al., Phys. Rev. Lett. 78, 2952 (1997); see also comment by D. Carroll and X. H. Zheng, ibid. 81, 4272 (1998), and reply by J. P. Dewitz and W. Hübner, ibid. 81, 4273 (1998).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2952
-
-
Kasparian, J.1
Krämer, B.2
Dewitz, J.P.3
Vajda, S.4
Vezin, B.5
Boutou, V.6
Leisner, T.7
Hübner, W.8
Wolf, J.-P.9
Wöste, L.10
-
6
-
-
14944356930
-
-
J. Kasparian, B. Krämer, J. P. Dewitz, S. Vajda, B. Vezin, V. Boutou, T. Leisner, W. Hübner, J.-P. Wolf, and L. Wöste et al., Phys. Rev. Lett. 78, 2952 (1997); see also comment by D. Carroll and X. H. Zheng, ibid. 81, 4272 (1998), and reply by J. P. Dewitz and W. Hübner, ibid. 81, 4273 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4272
-
-
Carroll, D.1
Zheng, X.H.2
-
7
-
-
14944379198
-
-
J. Kasparian, B. Krämer, J. P. Dewitz, S. Vajda, B. Vezin, V. Boutou, T. Leisner, W. Hübner, J.-P. Wolf, and L. Wöste et al., Phys. Rev. Lett. 78, 2952 (1997); see also comment by D. Carroll and X. H. Zheng, ibid. 81, 4272 (1998), and reply by J. P. Dewitz and W. Hübner, ibid. 81, 4273 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4273
-
-
Dewitz, J.P.1
Hübner, W.2
-
8
-
-
4243602419
-
-
C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Wöste, and J.-P. Wolf, Phys. Rev. Lett. 89, 035002 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 035002
-
-
Favre, C.1
Boutou, V.2
Hill, S.C.3
Zimmer, W.4
Krenz, M.5
Lambrecht, H.6
Yu, J.7
Chang, R.K.8
Wöste, L.9
Wolf, J.-P.10
-
10
-
-
0942277834
-
-
S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, Phys. Rev. Lett. 91, 258302 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 258302
-
-
Roke, S.1
Roeterdink, W.G.2
Wijnhoven, J.E.G.J.3
Petukhov, A.V.4
Kleyn, A.W.5
Bonn, M.6
-
13
-
-
0000090150
-
-
J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, Phys. Rev. Lett. 83, 4045 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 4045
-
-
Dadap, J.I.1
Shan, J.2
Eisenthal, K.B.3
Heinz, T.F.4
-
14
-
-
23544466694
-
-
0exp(ik·r). The electromagnetic wave is assumed to be monochromatic with frequency related to the k vector through the dispersion relation ω=ck. In the case when the intensity of the electromagnetic wave varies in time and, thus, the system is not in "steady state" one can follow a route suggested in the works of P. S. Pershan, Phys. Rev. 130, 919 (1963) and J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, ibid. 127, 1918 (1962). In this approach one introduces fields that are Fourier transformed over finite intervals. The length of the interval (T) is long enough so that ωT≫ 1, but still shorter than the time in which fields go from zero to the steady state.
-
(1963)
Phys. Rev.
, vol.130
, pp. 919
-
-
Pershan, P.S.1
-
15
-
-
36149027784
-
-
0exp(ik·r). The electromagnetic wave is assumed to be monochromatic with frequency related to the k vector through the dispersion relation ω=ck. In the case when the intensity of the electromagnetic wave varies in time and, thus, the system is not in "steady state" one can follow a route suggested in the works of P. S. Pershan, Phys. Rev. 130, 919 (1963) and J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, ibid. 127, 1918 (1962). In this approach one introduces fields that are Fourier transformed over finite intervals. The length of the interval (T) is long enough so that ωT≫ 1, but still shorter than the time in which fields go from zero to the steady state.
-
(1962)
Phys. Rev.
, vol.127
, pp. 1918
-
-
Armstrong, J.A.1
Bloembergen, N.2
Ducuing, J.3
Pershan, P.S.4
-
16
-
-
85088491161
-
-
note
-
(2ω) with the effective field factors. Index ℓ denotes the order of multipolar expansion and should not be confused with notation (2ω) in the tensor of the second-order nonlinear susceptibility.
-
-
-
-
19
-
-
9744265911
-
-
W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, Phys. Rev. B 68, 085318 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 085318
-
-
Mochan, W.L.1
Maytorena, J.A.2
Mendoza, B.S.3
Brudny, V.L.4
-
20
-
-
0001336302
-
-
Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, Appl. Phys. Lett. 78, 766 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 766
-
-
Jiang, Y.1
Wilson, P.T.2
Downer, M.C.3
White, C.W.4
Withrow, S.P.5
-
22
-
-
14944382072
-
-
note
-
4ν symmetry without loss of generality.
-
-
-
-
24
-
-
85088491896
-
-
note
-
ℓ,m(θ, φ), L=(1/i)(r x ∇), ℓ ≥ 1. The absence of the ℓ=0 term results in the absence of an isotropic contribution to SHG.
-
-
-
-
25
-
-
0003498504
-
-
Academic, New York
-
I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980).
-
(1980)
Table of Integrals, Series, and Products
-
-
Gradsteyn, I.S.1
Ryzhik, I.M.2
-
27
-
-
14944385686
-
-
Master's thesis, University of Missouri-Kansas City
-
D. Segelstein, Master's thesis, University of Missouri-Kansas City, 1981.
-
(1981)
-
-
Segelstein, D.1
-
28
-
-
14944366622
-
-
Diploma thesis, Freie Universität Berlin
-
J. P. Dewitz, Diploma thesis, Freie Universität Berlin, 1994.
-
(1994)
-
-
Dewitz, J.P.1
|