메뉴 건너뛰기




Volumn 33, Issue 1, 2005, Pages 137-176

Global L 2-solutions of stochastic Navier-Stokes equations

Author keywords

Kraichnan's turbulence; Leray solution; Navier Stokes; Pathwise uniqueness; Stochastic; Strong solutions; Wiener chaos

Indexed keywords


EID: 14944348954     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/009117904000000630     Document Type: Article
Times cited : (219)

References (36)
  • 3
    • 84990576577 scopus 로고
    • Partial regularity of suitable weak solution of the Navier-Stokes equations
    • CAFFARELLI, L., KOHN, R. and NIRENBERG, L. (1982). Partial regularity of suitable weak solution of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 771-831.
    • (1982) Comm. Pure Appl. Math. , vol.35 , pp. 771-831
    • Caffarelli, L.1    Kohn, R.2    Nirenberg, L.3
  • 4
    • 0000148817 scopus 로고
    • The orthogonal development of non-linear functionals in a series of Fourier-Hermite functions
    • CAMERON, R. H. and MARTIN, W. T. (1947). The orthogonal development of non-linear functionals in a series of Fourier-Hermite functions. Ann. of Math. 48 385-392.
    • (1947) Ann. of Math. , vol.48 , pp. 385-392
    • Cameron, R.H.1    Martin, W.T.2
  • 5
    • 0002257687 scopus 로고
    • Stochastic Navier-Stokes equations
    • CAPIŃSKI, M. and CUTLAND, N. J. (1991). Stochastic Navier-Stokes equations. Acta Appl. Math. 25 59-85.
    • (1991) Acta Appl. Math. , vol.25 , pp. 59-85
    • Capiński, M.1    Cutland, N.J.2
  • 6
    • 43949156954 scopus 로고
    • Stochastic equations in Hubert spaces with applications to Navier-Stokes equations in any dimensions
    • CAPIŃSKI, M. and GATAREK, D. (1994). Stochastic equations in Hubert spaces with applications to Navier-Stokes equations in any dimensions. J. Funct. Anal. 126 26-35.
    • (1994) J. Funct. Anal. , vol.126 , pp. 26-35
    • Capiński, M.1    Gatarek, D.2
  • 7
    • 0342903113 scopus 로고    scopus 로고
    • On the existence of a solution to stochastic Navier-Stokes equations
    • CAPIŃSKI, M. and PESZAT, S. (2001). On the existence of a solution to stochastic Navier-Stokes equations. Nonlinear Anal. 44 141-177.
    • (2001) Nonlinear Anal. , vol.44 , pp. 141-177
    • Capiński, M.1    Peszat, S.2
  • 8
    • 0036912185 scopus 로고    scopus 로고
    • Two-dimensional Navier-Stokes equation driven by a space-time white noise
    • DA PRATO, G. and DEBUSSCHE, A. (2002). Two-dimensional Navier-Stokes equation driven by a space-time white noise. J. Funct. Anal. 196 180-210.
    • (2002) J. Funct. Anal. , vol.196 , pp. 180-210
    • Da Prato, G.A.1    Debussche, A.2
  • 10
    • 0000152394 scopus 로고
    • Dissipativity and invariant measures for stochastic Navier-Stokes equations
    • FLANDOLI, F. (1994). Dissipativity and invariant measures for stochastic Navier-Stokes equations. Nonlinear Differential Equations and Appl. 1 403-423.
    • (1994) Nonlinear Differential Equations and Appl. , vol.1 , pp. 403-423
    • Flandoli, F.1
  • 11
    • 21844520649 scopus 로고
    • Martingale and stationary solutions for stochastic Navier-Stokes equations
    • FLANDOLI, F. and GATAREK, D. (1995). Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Related Fields 102 367-391.
    • (1995) Probab. Theory Related Fields , vol.102 , pp. 367-391
    • Flandoli, F.1    Gatarek, D.2
  • 12
    • 21844511707 scopus 로고
    • Ergodicity of the 2-D Navier-Stokes equation under random perturbations
    • FLANDOLI, F. and MASLOWSKI, B. (1995). Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 171 119-141.
    • (1995) Comm. Math. Phys. , vol.171 , pp. 119-141
    • Flandoli, F.1    Maslowski, B.2
  • 15
    • 0346189330 scopus 로고    scopus 로고
    • Phase transition in the passive scalar advection
    • GAWEDZKI, K. and VEROASSOLA, M. (2000). Phase transition in the passive scalar advection. Phys. D 138 63-90.
    • (2000) Phys. D , vol.138 , pp. 63-90
    • Gawedzki, K.1    Veroassola, M.2
  • 16
    • 3542994244 scopus 로고
    • Stochastic evolution equations and densities of conditional distributions
    • Springer, New York
    • GRIGELIONIS, B. and MIKULEVICIUS, R. (1983). Stochastic evolution equations and densities of conditional distributions. Lecture Notes in Control and Inform. Sci. 49 49-86. Springer, New York.
    • (1983) Lecture Notes in Control and Inform. Sci. , vol.49 , pp. 49-86
    • Grigelionis, B.1    Mikulevicius, R.2
  • 17
    • 0040361064 scopus 로고    scopus 로고
    • Existence of strong solutions of Ito's ststochastic equations via approximations
    • GYONGY, I. and KRYLOV, N. (1996). Existence of strong solutions of Ito's ststochastic equations via approximations. Probab. Theory Related Fields 105 143-158.
    • (1996) Probab. Theory Related Fields , vol.105 , pp. 143-158
    • Gyongy, I.1    Krylov, N.2
  • 20
    • 33646950376 scopus 로고
    • Small-scale structure of a scalar field converted by turbulence
    • KRAICHNAN, R. H. (1968). Small-scale structure of a scalar field converted by turbulence. Phys. Fluids 11 945-963.
    • (1968) Phys. Fluids , vol.11 , pp. 945-963
    • Kraichnan, R.H.1
  • 21
    • 0036547546 scopus 로고    scopus 로고
    • Integration of Brownian vector fields
    • LEJAN, Y. and RAIMOND, O. (2002). Integration of Brownian vector fields. Ann. Probab. 30 826-873.
    • (2002) Ann. Probab. , vol.30 , pp. 826-873
    • Lejan, Y.1    Raimond, O.2
  • 22
    • 0004034090 scopus 로고
    • Quantum probability for probabilists, 2nd ed.
    • Springer, New York
    • MEYER, P.-A. (1995). Quantum Probability for Probabilists, 2nd ed. Lecture Notes in Math. 1538. Springer, New York.
    • (1995) Lecture Notes in Math. , vol.1538
    • Meyer, P.-A.1
  • 23
    • 0037282289 scopus 로고    scopus 로고
    • On the cauchy problem for stochastic Stokes equation
    • MIKULEVICIUS, R. (2002). On the Cauchy problem for stochastic Stokes equation. SIAM J. Math. Anal. 34 121-141.
    • (2002) SIAM J. Math. Anal. , vol.34 , pp. 121-141
    • Mikulevicius, R.1
  • 24
    • 0032394325 scopus 로고    scopus 로고
    • Linear parabolic stochastic PDE's and Wiener chaos
    • MIKULEVICIUS, R. and ROZOVSKII, B. L. (1998). Linear parabolic stochastic PDE's and Wiener chaos. SIAM J. Math. Anal. 29 452-480.
    • (1998) SIAM J. Math. Anal. , vol.29 , pp. 452-480
    • Mikulevicius, R.1    Rozovskii, B.L.2
  • 25
    • 0039756056 scopus 로고    scopus 로고
    • Martingale problems for stochastic PDE's
    • Stochastic Partial Differential Equations: Six Perspectives (R. Carmona and B. L. Rozovskii, eds.) Amer. Math. Soc., Providence, RI
    • MIKULEVICIUS, R. and ROZOVSKII, B. L. (1999). Martingale problems for stochastic PDE's. In Stochastic Partial Differential Equations: Six Perspectives (R. Carmona and B. L. Rozovskii, eds.). Mathematical Surveys and Monographs 64 243-325. Amer. Math. Soc., Providence, RI.
    • (1999) Mathematical Surveys and Monographs , vol.64 , pp. 243-325
    • Mikulevicius, R.1    Rozovskii, B.L.2
  • 28
    • 84992596640 scopus 로고    scopus 로고
    • On martingale problem solutions of stochastic Navier-Stokes equations
    • (G. Da Prato and L. Tubaro, eds.). Dekker, New York
    • MIKULEVICIUS, R. and ROZOVSKII, B. L. (2002). On martingale problem solutions of stochastic Navier-Stokes equations. In Stochastic Partial Differential Equations and Applications (G. Da Prato and L. Tubaro, eds.) 405-416. Dekker, New York.
    • (2002) Stochastic Partial Differential Equations and Applications , pp. 405-416
    • Mikulevicius, R.1    Rozovskii, B.L.2
  • 29
    • 1842643758 scopus 로고    scopus 로고
    • Stochastic Navier-Stokes equations for turbulent flows
    • MIKULEVICIUS, R. and ROZOVSKII, B. L. (2004). Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35 1250-1310.
    • (2004) SIAM J. Math. Anal. , vol.35 , pp. 1250-1310
    • Mikulevicius, R.1    Rozovskii, B.L.2
  • 35
    • 0000827166 scopus 로고
    • On the uniqueness of solutions of stochastic differential equations I
    • YAMADA, T. and WATANABE, S. (1971). On the uniqueness of solutions of stochastic differential equations I. J. Math. Kyoto Univ. 11 155-167.
    • (1971) J. Math. Kyoto Univ. , vol.11 , pp. 155-167
    • Yamada, T.1    Watanabe, S.2
  • 36
    • 0008215982 scopus 로고
    • On the uniqueness of solutions of stochastic differential equations II
    • YAMADA, T. and WATANABE, S. (1971). On the uniqueness of solutions of stochastic differential equations II. J. Math. Kyoto Univ. 11 553-563.
    • (1971) J. Math. Kyoto Univ. , vol.11 , pp. 553-563
    • Yamada, T.1    Watanabe, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.